A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer
- URL: http://arxiv.org/abs/2409.14198v1
- Date: Sat, 21 Sep 2024 16:59:08 GMT
- Title: A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer
- Authors: Subhajit Paul, Ashutosh Gupta,
- Abstract summary: Digital Elevation Model (DEM) is an essential aspect in the remote sensing (RS) domain to analyze various applications related to surface elevations.
Here, we address the generation of high-resolution (HR) DEMs using HR multi-spectral (MX) satellite imagery as a guide.
We present a novel adversarial objective related to optimizing Sinkhorn distance with classical GAN.
- Score: 4.383449961857098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital Elevation Model (DEM) is an essential aspect in the remote sensing (RS) domain to analyze various applications related to surface elevations. Here, we address the generation of high-resolution (HR) DEMs using HR multi-spectral (MX) satellite imagery as a guide by introducing a novel hybrid transformer model consisting of Densely connected Multi-Residual Block (DMRB) and multi-headed Frequency Selective Graph Attention (M-FSGA). To promptly regulate this process, we utilize the notion of discriminator spatial maps as the conditional attention to the MX guide. Further, we present a novel adversarial objective related to optimizing Sinkhorn distance with classical GAN. In this regard, we provide both theoretical and empirical substantiation of better performance in terms of vanishing gradient issues and numerical convergence. Based on our experiments on 4 different DEM datasets, we demonstrate both qualitative and quantitative comparisons with available baseline methods and show that the performance of our proposed model is superior to others with sharper details and minimal errors.
Related papers
- Inter-slice Super-resolution of Magnetic Resonance Images by Pre-training and Self-supervised Fine-tuning [49.197385954021456]
In clinical practice, 2D magnetic resonance (MR) sequences are widely adopted. While individual 2D slices can be stacked to form a 3D volume, the relatively large slice spacing can pose challenges for visualization and subsequent analysis tasks.
To reduce slice spacing, deep-learning-based super-resolution techniques are widely investigated.
Most current solutions require a substantial number of paired high-resolution and low-resolution images for supervised training, which are typically unavailable in real-world scenarios.
arXiv Detail & Related papers (2024-06-10T02:20:26Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - SIRAN: Sinkhorn Distance Regularized Adversarial Network for DEM
Super-resolution using Discriminative Spatial Self-attention [5.178465447325005]
Digital Elevation Model (DEM) is an essential aspect in the remote sensing domain to analyze and explore different applications related to surface elevation information.
In this study, we intend to address the generation of high-resolution DEMs using high-resolution multi-spectral (MX) satellite imagery.
We present an objective function related to optimizing Sinkhorn distance with traditional GAN to improve the stability of adversarial learning.
arXiv Detail & Related papers (2023-11-27T12:03:22Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Multi-Depth Branch Network for Efficient Image Super-Resolution [12.042706918188566]
A longstanding challenge in Super-Resolution (SR) is how to efficiently enhance high-frequency details in Low-Resolution (LR) images.
We propose an asymmetric SR architecture featuring Multi-Depth Branch Module (MDBM)
MDBMs contain branches of different depths, designed to capture high- and low-frequency information simultaneously and efficiently.
arXiv Detail & Related papers (2023-09-29T15:46:25Z) - Multi-Dimensional Refinement Graph Convolutional Network with Robust
Decouple Loss for Fine-Grained Skeleton-Based Action Recognition [19.031036881780107]
We propose a flexible attention block called Channel-Variable Spatial-Temporal Attention (CVSTA) to enhance the discriminative power of spatial-temporal joints.
Based on CVSTA, we construct a Multi-Dimensional Refinement Graph Convolutional Network (MDR-GCN), which can improve the discrimination among channel-, joint- and frame-level features.
Furthermore, we propose a Robust Decouple Loss (RDL), which significantly boosts the effect of the CVSTA and reduces the impact of noise.
arXiv Detail & Related papers (2023-06-27T09:23:36Z) - MMFormer: Multimodal Transformer Using Multiscale Self-Attention for
Remote Sensing Image Classification [16.031616431297213]
We introduce a new Multimodal Transformer (MMFormer) for Remote Sensing (RS) image classification using Hyperspectral Image (HSI) and another source of data such as Light Detection and Ranging (LiDAR)
Compared with traditional Vision Transformer (ViT) lacking inductive biases of convolutions, we first introduce convolutional layers to our MMFormer to tokenize patches from multimodal data of HSI and LiDAR.
The proposed MSMHSA module can incorporate HSI to LiDAR data in a coarse-to-fine manner enabling us to learn a fine-grained representation.
arXiv Detail & Related papers (2023-03-23T08:34:24Z) - Implicit Neural Representation Learning for Hyperspectral Image
Super-Resolution [0.0]
Implicit Neural Representations (INRs) are making strides as a novel and effective representation.
We propose a novel HSI reconstruction model based on INR which represents HSI by a continuous function mapping a spatial coordinate to its corresponding spectral radiance values.
arXiv Detail & Related papers (2021-12-20T14:07:54Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.