論文の概要: Predicting Coronary Heart Disease Using a Suite of Machine Learning Models
- arxiv url: http://arxiv.org/abs/2409.14231v1
- Date: Sat, 21 Sep 2024 19:22:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 23:37:15.899409
- Title: Predicting Coronary Heart Disease Using a Suite of Machine Learning Models
- Title(参考訳): 機械学習モデルを用いた冠動脈疾患の予測
- Authors: Jamal Al-Karaki, Philip Ilono, Sanchit Baweja, Jalal Naghiyev, Raja Singh Yadav, Muhammad Al-Zafar Khan,
- Abstract要約: 冠動脈疾患は世界中で何百万人もの人に影響を与えており、医療の分野としてよく研究されている。
心臓病の診断と予測には実用的かつ正確な方法が数多く存在するが、侵襲性、遅延検出、コストといった限界がある。
機械学習アルゴリズムによる教師付き学習は、早期診断の先駆けとなる、低コスト(コンピュータによる)非侵襲的なソリューションを提供する。
- 参考スコア(独自算出の注目度): 0.1979158763744267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coronary Heart Disease affects millions of people worldwide and is a well-studied area of healthcare. There are many viable and accurate methods for the diagnosis and prediction of heart disease, but they have limiting points such as invasiveness, late detection, or cost. Supervised learning via machine learning algorithms presents a low-cost (computationally speaking), non-invasive solution that can be a precursor for early diagnosis. In this study, we applied several well-known methods and benchmarked their performance against each other. It was found that Random Forest with oversampling of the predictor variable produced the highest accuracy of 84%.
- Abstract(参考訳): 冠動脈疾患は世界中で何百万人もの人に影響を与えており、医療の分野としてよく研究されている。
心臓病の診断と予測には実用的かつ正確な方法が数多く存在するが、侵襲性、遅延検出、コストといった限界がある。
機械学習アルゴリズムによる教師付き学習は、早期診断の先駆けとなる、低コスト(コンピュータによる)非侵襲的なソリューションを提供する。
本研究では,いくつかのよく知られた手法を適用し,それらの性能を比較検討した。
その結果,予測変数をオーバーサンプリングしたランダムフォレストが84%の精度を示した。
関連論文リスト
- Classification and Prediction of Heart Diseases using Machine Learning Algorithms [0.0]
K-Nearest Neighbor法は、患者が心臓病を患っているかどうかを判断する最も効果的な機械学習アルゴリズムであることが示されている。
追加の機械学習アルゴリズムの心臓疾患予測への応用について、さらなる研究を行うことは有益である。
論文 参考訳(メタデータ) (2024-09-05T16:52:20Z) - Leveraging cough sounds to optimize chest x-ray usage in low-resource
settings [35.63955045151504]
インド・ビハール州プルニアのクリスチャン・メディカル・センターと病院で胸部X線検査を行った137例について前向きに収集した。
それぞれの患者は放射線治療中に少なくとも5つのうっ血を投与した。
胸部X線異常を予測するために, 3つのモデルを開発し, 試験し, 比較した。
論文 参考訳(メタデータ) (2024-02-13T20:54:55Z) - Evaluating The Accuracy of Classification Algorithms for Detecting Heart
Disease Risk [0.0]
本研究は、心臓疾患の医学的データセットを用いた分類アルゴリズムを利用する。
アルゴリズムの性能は,精度,感度,特異性などの標準指標を用いて評価した。
その結果、心臓病を予測する最良のアルゴリズムは、99.24%の精度でランダムフォレストであることがわかった。
論文 参考訳(メタデータ) (2023-12-06T06:41:48Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - An Improved Heart Disease Prediction Using Stacked Ensemble Method [0.9187159782788579]
機械学習を用いた心疾患予測システムを構築した。
心臓疾患のある人と正常な人とを簡単に区別することができる。
論文 参考訳(メタデータ) (2023-04-12T17:53:59Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Machine Learning and Ensemble Approach Onto Predicting Heart Disease [0.0]
心臓血管疾患(英: Cardiovascular disease, CVD)は、心臓疾患ともいわれ、ここ数十年でヒトの死因として徐々に成長してきた疾患である。
本稿では,ロジスティック回帰,近縁近傍,サポートベクトルマシン,決定木,ガウスのナイーブベイズ,ランダムフォレスト,多層知覚論(人工ニューラルネットワーク)などの分類モデルの訓練に提供されるデータを活用する。
論文 参考訳(メタデータ) (2021-11-16T18:00:22Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
心臓病は、世界中の多くの人々の生活を妨げる最も致命的な病気の1つである。
本稿では,健康な人と非健康な人の分類に1次元畳み込みニューラルネットワークを用いた新しいディープラーニングアーキテクチャを提案する。
提案するネットワークは、データセット上で97%以上のトレーニング精度と96%のテスト精度を達成する。
論文 参考訳(メタデータ) (2021-05-22T22:00:57Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - Peri-Diagnostic Decision Support Through Cost-Efficient Feature
Acquisition at Test-Time [37.160335232396406]
CADxのサブプロブレムは、取得段階を含む、周辺診断ワークフロー全体を通して医師を導くことである。
本稿では,入力層でのドロップアウトと,テスト時にトレーニングネットワークの統合勾配を動的に考慮し,特徴量の重要性を評価できる新しいアプローチを提案する。
その結果,提案手法は従来手法よりもコスト効率が高く,全体の精度も高いことがわかった。
論文 参考訳(メタデータ) (2020-03-31T12:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。