MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views
- URL: http://arxiv.org/abs/2409.14316v1
- Date: Sun, 22 Sep 2024 05:07:20 GMT
- Title: MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views
- Authors: Wangze Xu, Huachen Gao, Shihe Shen, Rui Peng, Jianbo Jiao, Ronggang Wang,
- Abstract summary: Novel View Synthesis (NVS) is a significant challenge in 3D vision applications.
We propose textbfMVPGS, a few-shot NVS method that excavates the multi-view priors based on 3D Gaussian Splatting.
Experiments show that the proposed method achieves state-of-the-art performance with real-time rendering speed.
- Score: 27.47491233656671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the Neural Radiance Field (NeRF) advancement has facilitated few-shot Novel View Synthesis (NVS), which is a significant challenge in 3D vision applications. Despite numerous attempts to reduce the dense input requirement in NeRF, it still suffers from time-consumed training and rendering processes. More recently, 3D Gaussian Splatting (3DGS) achieves real-time high-quality rendering with an explicit point-based representation. However, similar to NeRF, it tends to overfit the train views for lack of constraints. In this paper, we propose \textbf{MVPGS}, a few-shot NVS method that excavates the multi-view priors based on 3D Gaussian Splatting. We leverage the recent learning-based Multi-view Stereo (MVS) to enhance the quality of geometric initialization for 3DGS. To mitigate overfitting, we propose a forward-warping method for additional appearance constraints conforming to scenes based on the computed geometry. Furthermore, we introduce a view-consistent geometry constraint for Gaussian parameters to facilitate proper optimization convergence and utilize a monocular depth regularization as compensation. Experiments show that the proposed method achieves state-of-the-art performance with real-time rendering speed. Project page: https://zezeaaa.github.io/projects/MVPGS/
Related papers
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting [0.0]
3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis.
It produces a high-quality rendering with a lot of input views, but its performance drops significantly when only a few views are available.
We propose a depth-aware Gaussian splatting method for few-shot novel view synthesis.
arXiv Detail & Related papers (2024-10-14T20:42:30Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
We propose learning-to-prune 3DGS, where a trainable binary mask is applied to the importance score that can find optimal pruning ratio automatically.
Experiments have shown that LP-3DGS consistently produces a good balance that is both efficient and high quality.
arXiv Detail & Related papers (2024-05-29T05:58:34Z) - Bootstrap 3D Reconstructed Scenes from 3D Gaussian Splatting [10.06208115191838]
We present a bootstrapping method to enhance the rendering of novel views using trained 3D-GS.
Our results indicate that bootstrapping effectively reduces artifacts, as well as clear enhancements on the evaluation metrics.
arXiv Detail & Related papers (2024-04-29T12:57:05Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable Distilled Feature Fields [54.482261428543985]
Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis.
3D Gaussian splatting has shown state-of-the-art performance on real-time radiance field rendering.
We propose architectural and training changes to efficiently avert this problem.
arXiv Detail & Related papers (2023-12-06T00:46:30Z) - FSGS: Real-Time Few-shot View Synthesis using Gaussian Splatting [58.41056963451056]
We propose a few-shot view synthesis framework based on 3D Gaussian Splatting.
This framework enables real-time and photo-realistic view synthesis with as few as three training views.
FSGS achieves state-of-the-art performance in both accuracy and rendering efficiency across diverse datasets.
arXiv Detail & Related papers (2023-12-01T09:30:02Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.