Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2410.11080v1
- Date: Mon, 14 Oct 2024 20:42:30 GMT
- Title: Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting
- Authors: Raja Kumar, Vanshika Vats,
- Abstract summary: 3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis.
It produces a high-quality rendering with a lot of input views, but its performance drops significantly when only a few views are available.
We propose a depth-aware Gaussian splatting method for few-shot novel view synthesis.
- Score: 0.0
- License:
- Abstract: 3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis by achieving lower computational costs and real-time high-quality rendering. Although it produces a high-quality rendering with a lot of input views, its performance drops significantly when only a few views are available. In this work, we address this by proposing a depth-aware Gaussian splatting method for few-shot novel view synthesis. We use monocular depth prediction as a prior, along with a scale-invariant depth loss, to constrain the 3D shape under just a few input views. We also model color using lower-order spherical harmonics to avoid overfitting. Further, we observe that removing splats with lower opacity periodically, as performed in the original work, leads to a very sparse point cloud and, hence, a lower-quality rendering. To mitigate this, we retain all the splats, leading to a better reconstruction in a few view settings. Experimental results show that our method outperforms the traditional 3D Gaussian splatting methods by achieving improvements of 10.5% in peak signal-to-noise ratio, 6% in structural similarity index, and 14.1% in perceptual similarity, thereby validating the effectiveness of our approach. The code will be made available at: https://github.com/raja-kumar/depth-aware-3DGS
Related papers
- Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis [53.702118455883095]
We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting.
Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images.
Our method significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-10-24T15:10:27Z) - MVPGS: Excavating Multi-view Priors for Gaussian Splatting from Sparse Input Views [27.47491233656671]
Novel View Synthesis (NVS) is a significant challenge in 3D vision applications.
We propose textbfMVPGS, a few-shot NVS method that excavates the multi-view priors based on 3D Gaussian Splatting.
Experiments show that the proposed method achieves state-of-the-art performance with real-time rendering speed.
arXiv Detail & Related papers (2024-09-22T05:07:20Z) - Splatt3R: Zero-shot Gaussian Splatting from Uncalibrated Image Pairs [29.669534899109028]
We introduce Splatt3R, a pose-free, feed-forward method for in-the-wild 3D reconstruction and novel view synthesis from stereo pairs.
Given uncalibrated natural images, Splatt3R can predict 3D Gaussian Splats without requiring any camera parameters or depth information.
Splatt3R can reconstruct scenes at 4FPS at 512 x 512 resolution, and the resultant splats can be rendered in real-time.
arXiv Detail & Related papers (2024-08-25T18:27:20Z) - Flash3D: Feed-Forward Generalisable 3D Scene Reconstruction from a Single Image [80.48452783328995]
Flash3D is a method for scene reconstruction and novel view synthesis from a single image.
For generalisability, we start from a "foundation" model for monocular depth estimation.
For efficiency, we base this extension on feed-forward Gaussian Splatting.
arXiv Detail & Related papers (2024-06-06T17:59:56Z) - AbsGS: Recovering Fine Details for 3D Gaussian Splatting [10.458776364195796]
3D Gaussian Splatting (3D-GS) technique couples 3D primitives with differentiable Gaussianization to achieve high-quality novel view results.
However, 3D-GS frequently suffers from over-reconstruction issue in intricate scenes containing high-frequency details, leading to blurry rendered images.
We present a comprehensive analysis of the cause of aforementioned artifacts, namely gradient collision.
Our strategy efficiently identifies large Gaussians in over-reconstructed regions, and recovers fine details by splitting.
arXiv Detail & Related papers (2024-04-16T11:44:12Z) - StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Rendering [42.91830228828405]
We present a novel hierarchicalization approach that culls splats with minimal processing overhead.
Our approach is only 4% slower on average than the original Gaussian Splatting.
rendering performance is nearly doubled, making our approach 1.6x faster than the original Gaussian Splatting.
arXiv Detail & Related papers (2024-02-01T11:46:44Z) - Deblurring 3D Gaussian Splatting [7.315329140016319]
We propose a novel real-time deblurring framework, Deblurring 3D Gaussian Splatting, using a small Multi-Layer Perceptron (MLP)
While Deblurring 3D Gaussian Splatting can still enjoy real-time rendering, it can reconstruct fine and sharp details from blurry images.
arXiv Detail & Related papers (2024-01-01T18:23:51Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - HumanGaussian: Text-Driven 3D Human Generation with Gaussian Splatting [113.37908093915837]
Existing methods optimize 3D representations like mesh or neural fields via score distillation sampling (SDS), which suffers from inadequate fine details or excessive training time.
In this paper, we propose an efficient yet effective framework, HumanGaussian, that generates high-quality 3D humans with fine-grained geometry and realistic appearance.
arXiv Detail & Related papers (2023-11-28T18:59:58Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - View Synthesis with Sculpted Neural Points [64.40344086212279]
Implicit neural representations have achieved impressive visual quality but have drawbacks in computational efficiency.
We propose a new approach that performs view synthesis using point clouds.
It is the first point-based method to achieve better visual quality than NeRF while being more than 100x faster in rendering speed.
arXiv Detail & Related papers (2022-05-12T03:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.