Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining
- URL: http://arxiv.org/abs/2409.14327v2
- Date: Tue, 8 Oct 2024 07:14:04 GMT
- Title: Transforming Multidimensional Time Series into Interpretable Event Sequences for Advanced Data Mining
- Authors: Xu Yan, Yaoting Jiang, Wenyi Liu, Didi Yi, Jianjun Wei,
- Abstract summary: This paper introduces a novel proposed representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis.
The proposed framework has significant potential for applications across various fields, including services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring, trend analysis, and internet businesses for tracking user behavior and forecasting.
- Score: 5.2863523790908955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel spatiotemporal feature representation model designed to address the limitations of traditional methods in multidimensional time series (MTS) analysis. The proposed approach converts MTS into one-dimensional sequences of spatially evolving events, preserving the complex coupling relationships between dimensions. By employing a variable-length tuple mining method, key spatiotemporal features are extracted, enhancing the interpretability and accuracy of time series analysis. Unlike conventional models, this unsupervised method does not rely on large training datasets, making it adaptable across different domains. Experimental results from motion sequence classification validate the model's superior performance in capturing intricate patterns within the data. The proposed framework has significant potential for applications across various fields, including backend services for monitoring and optimizing IT infrastructure, medical diagnosis through continuous patient monitoring and health trend analysis, and internet businesses for tracking user behavior and forecasting sales. This work offers a new theoretical foundation and technical support for advancing time series data mining and its practical applications in human behavior recognition and other domains.
Related papers
- TSI: A Multi-View Representation Learning Approach for Time Series Forecasting [29.05140751690699]
This study introduces a novel multi-view approach for time series forecasting.
It integrates trend and seasonal representations with an Independent Component Analysis (ICA)-based representation.
This approach offers a holistic understanding of time series data, going beyond traditional models that often miss nuanced, nonlinear relationships.
arXiv Detail & Related papers (2024-09-30T02:11:57Z) - Advancing Enterprise Spatio-Temporal Forecasting Applications: Data Mining Meets Instruction Tuning of Language Models For Multi-modal Time Series Analysis in Low-Resource Settings [0.0]
patio-temporal forecasting is crucial in transportation, logistics, and supply chain management.
We propose a dynamic, multi-modal approach that integrates the strengths of traditional forecasting methods and instruction tuning of small language models.
Our framework enables on-premises customization with reduced computational and memory demands, while maintaining inference speed and data privacy/security.
arXiv Detail & Related papers (2024-08-24T16:32:58Z) - Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis [31.43159668073136]
Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention.
Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies.
This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN.
arXiv Detail & Related papers (2024-08-23T14:06:30Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - UniTime: A Language-Empowered Unified Model for Cross-Domain Time Series
Forecasting [59.11817101030137]
This research advocates for a unified model paradigm that transcends domain boundaries.
Learning an effective cross-domain model presents the following challenges.
We propose UniTime for effective cross-domain time series learning.
arXiv Detail & Related papers (2023-10-15T06:30:22Z) - Time Series Continuous Modeling for Imputation and Forecasting with Implicit Neural Representations [15.797295258800638]
We introduce a novel modeling approach for time series imputation and forecasting, tailored to address the challenges often encountered in real-world data.
Our method relies on a continuous-time-dependent model of the series' evolution dynamics.
A modulation mechanism, driven by a meta-learning algorithm, allows adaptation to unseen samples and extrapolation beyond observed time-windows.
arXiv Detail & Related papers (2023-06-09T13:20:04Z) - cs-net: structural approach to time-series forecasting for
high-dimensional feature space data with limited observations [1.5533753199073637]
We propose a flexible data feature extraction technique that excels in high-dimensional multivariate forecasting tasks.
Our approach was originally developed for the National Science Foundation (NSF) Algorithms for Threat Detection (ATD) 2022 Challenge.
Our models trained on the GDELT dataset finished 1st and 2nd places in the ATD sprint series and hold promise for other datasets for time series forecasting.
arXiv Detail & Related papers (2022-12-05T19:46:47Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
We propose a continuous model to forecast Multivariate Time series with dynamic Graph neural Ordinary Differential Equations (MTGODE)
Specifically, we first abstract multivariate time series into dynamic graphs with time-evolving node features and unknown graph structures.
Then, we design and solve a neural ODE to complement missing graph topologies and unify both spatial and temporal message passing.
arXiv Detail & Related papers (2022-02-17T02:17:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.