Distributionally Robust Inverse Reinforcement Learning for Identifying Multi-Agent Coordinated Sensing
- URL: http://arxiv.org/abs/2409.14542v1
- Date: Sun, 22 Sep 2024 17:44:32 GMT
- Title: Distributionally Robust Inverse Reinforcement Learning for Identifying Multi-Agent Coordinated Sensing
- Authors: Luke Snow, Vikram Krishnamurthy,
- Abstract summary: We derive a minimax distributionally robust inverse reinforcement learning (IRL) algorithm to reconstruct the utility functions of a multi-agent sensing system.
We prove the equivalence between this robust estimation and a semi-infinite optimization reformulation, and we propose a consistent algorithm to compute solutions.
- Score: 13.440621354486906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We derive a minimax distributionally robust inverse reinforcement learning (IRL) algorithm to reconstruct the utility functions of a multi-agent sensing system. Specifically, we construct utility estimators which minimize the worst-case prediction error over a Wasserstein ambiguity set centered at noisy signal observations. We prove the equivalence between this robust estimation and a semi-infinite optimization reformulation, and we propose a consistent algorithm to compute solutions. We illustrate the efficacy of this robust IRL scheme in numerical studies to reconstruct the utility functions of a cognitive radar network from observed tracking signals.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - Optimization of Iterative Blind Detection based on Expectation Maximization and Belief Propagation [29.114100423416204]
We propose a blind symbol detection for block-fading linear inter-symbol channels.
We design a joint channel estimation and detection scheme that combines the study expectation algorithm and the ubiquitous belief propagation algorithm.
We show that the proposed method can learn efficient schedules that generalize well and even outperform coherent BP detection in high signal-to-noise scenarios.
arXiv Detail & Related papers (2024-08-05T08:45:50Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Asynchronous Distributed Reinforcement Learning for LQR Control via Zeroth-Order Block Coordinate Descent [7.6860514640178]
We propose a novel zeroth-order optimization algorithm for distributed reinforcement learning.
It allows each agent to estimate its local gradient by cost evaluation independently, without use of any consensus protocol.
arXiv Detail & Related papers (2021-07-26T18:11:07Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
Distributionally robust supervised learning is emerging as a key paradigm for building reliable machine learning systems for real-world applications.
Existing algorithms for solving Wasserstein DRSL involve solving complex subproblems or fail to make use of gradients.
We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable extra-gradient algorithms.
arXiv Detail & Related papers (2021-04-27T16:56:09Z) - Sparse recovery by reduced variance stochastic approximation [5.672132510411465]
We discuss application of iterative quadratic optimization routines to the problem of sparse signal recovery from noisy observation.
We show how one can straightforwardly enhance reliability of the corresponding solution by using Median-of-Means like techniques.
arXiv Detail & Related papers (2020-06-11T12:31:20Z) - Study of Diffusion Normalized Least Mean M-estimate Algorithms [0.8749675983608171]
This work proposes diffusion normalized least mean M-estimate algorithm based on the modified Huber function.
We analyze the transient, steady-state and stability behaviors of the algorithms in a unified framework.
Simulations in various impulsive noise scenarios show that the proposed algorithms are superior to some existing diffusion algorithms.
arXiv Detail & Related papers (2020-04-20T00:28:41Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.