論文の概要: RACOON: An LLM-based Framework for Retrieval-Augmented Column Type Annotation with a Knowledge Graph
- arxiv url: http://arxiv.org/abs/2409.14556v2
- Date: Fri, 1 Nov 2024 01:15:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:08:18.162182
- Title: RACOON: An LLM-based Framework for Retrieval-Augmented Column Type Annotation with a Knowledge Graph
- Title(参考訳): RACOON:知識グラフを用いた検索型カラム型アノテーションのためのLLMベースのフレームワーク
- Authors: Lindsey Linxi Wei, Guorui Xiao, Magdalena Balazinska,
- Abstract要約: 我々は、Large Language Models(LLMs)が提供するコンテキスト情報を増やすために知識グラフを使用する方法を示す。
RACOONと呼ばれる我々の手法は、生成中に事前訓練されたパラメトリック知識と非パラメトリック知識を組み合わせることで、カラム型におけるLLMの性能を向上させる。
実験の結果, RACOONはバニラLEM推定と比較して最大0.21マイクロF-1の改善を達成できた。
- 参考スコア(独自算出の注目度): 5.080968323993759
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an important component of data exploration and integration, Column Type Annotation (CTA) aims to label columns of a table with one or more semantic types. With the recent development of Large Language Models (LLMs), researchers have started to explore the possibility of using LLMs for CTA, leveraging their strong zero-shot capabilities. In this paper, we build on this promising work and improve on LLM-based methods for CTA by showing how to use a Knowledge Graph (KG) to augment the context information provided to the LLM. Our approach, called RACOON, combines both pre-trained parametric and non-parametric knowledge during generation to improve LLMs' performance on CTA. Our experiments show that RACOON achieves up to a 0.21 micro F-1 improvement compared against vanilla LLM inference.
- Abstract(参考訳): データ探索と統合の重要なコンポーネントとして、カラム型アノテーション(CTA)は、1つ以上のセマンティックタイプを持つテーブルの列をラベル付けすることを目的としている。
最近のLarge Language Models (LLMs)の開発で、研究者は強力なゼロショット機能を活用して、CTAにLLMを使用する可能性を探り始めた。
本稿では、この有望な作業に基づいて、LLMに提供されたコンテキスト情報をKG(Knowledge Graph)を用いて拡張する方法を示すことで、CTAのLCMベースの手法を改善する。
RACOONと呼ばれる我々の手法は、CTAにおけるLLMの性能を向上させるために、事前訓練されたパラメトリック知識と非パラメトリック知識を組み合わせる。
実験の結果, RACOONはバニラLEM推定と比較して最大0.21マイクロF-1の改善を達成できた。
関連論文リスト
- Enhancing High-order Interaction Awareness in LLM-based Recommender Model [3.7623606729515133]
本稿では,LLMベースのリコメンデータ(ELMRec)について述べる。
我々は、レコメンデーションのためのグラフ構築相互作用のLLM解釈を大幅に強化するために、単語全体の埋め込みを強化する。
ELMRecは、直接およびシーケンシャルなレコメンデーションの両方において、最先端(SOTA)メソッドよりも優れています。
論文 参考訳(メタデータ) (2024-09-30T06:07:12Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF)は、さまざまな領域で大きな可能性を証明している。
本稿では,軽量 (1B パラメータ) LLM のコード生成能力を改善するための RLAIF フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:16:03Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
大規模言語モデル(LLM)は、幅広い汎用タスクを解く際、印象的なゼロショット能力を示した。
LLMは時間的情報の認識と利用に不足しており、シーケンシャルなデータの理解を必要とするタスクではパフォーマンスが悪い。
LLMに基づくシーケンシャルレコメンデーションのために、歴史的相互作用の中で時間情報を利用する3つのプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2024-05-05T00:21:26Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
ExaRanker-Openを導入し、オープンソース言語モデルを適用して、説明を生成する。
以上の結果から,LLMのサイズが大きくなるにつれて,説明の組み込みが神経ランク付けを継続的に促進することが明らかとなった。
論文 参考訳(メタデータ) (2024-02-09T11:23:14Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Large Language Models as Topological Structure Enhancers for Text-Attributed Graphs [4.487720716313697]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野に革命をもたらした。
本研究では,LLMの情報検索とテキスト生成機能を活用して,ノード分類設定の下でのテキスト分散グラフ(TAG)のトポロジ構造を洗練・強化する方法について検討する。
論文 参考訳(メタデータ) (2023-11-24T07:53:48Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。