論文の概要: Backtracking Improves Generation Safety
- arxiv url: http://arxiv.org/abs/2409.14586v1
- Date: Sun, 22 Sep 2024 20:28:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:08:18.051262
- Title: Backtracking Improves Generation Safety
- Title(参考訳): バックトラッキングはジェネレーションセーフティを改善する
- Authors: Yiming Zhang, Jianfeng Chi, Hailey Nguyen, Kartikeya Upasani, Daniel M. Bikel, Jason Weston, Eric Michael Smith,
- Abstract要約: 本稿では,言語モデルが“アンド”し,自身の安全でない生成から回復することを可能にする手法であるバックトラッキングを提案する。
バックトラックにトレーニングされたモデルは、ベースラインモデルよりも一貫して安全であることを示す。
- 参考スコア(独自算出の注目度): 27.214507875399086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text generation has a fundamental limitation almost by definition: there is no taking back tokens that have been generated, even when they are clearly problematic. In the context of language model safety, when a partial unsafe generation is produced, language models by their nature tend to happily keep on generating similarly unsafe additional text. This is in fact how safety alignment of frontier models gets circumvented in the wild, despite great efforts in improving their safety. Deviating from the paradigm of approaching safety alignment as prevention (decreasing the probability of harmful responses), we propose backtracking, a technique that allows language models to "undo" and recover from their own unsafe generation through the introduction of a special [RESET] token. Our method can be incorporated into either SFT or DPO training to optimize helpfulness and harmlessness. We show that models trained to backtrack are consistently safer than baseline models: backtracking Llama-3-8B is four times more safe than the baseline model (6.1\% $\to$ 1.5\%) in our evaluations without regression in helpfulness. Our method additionally provides protection against four adversarial attacks including an adaptive attack, despite not being trained to do so.
- Abstract(参考訳): テキスト生成は定義上、基本的な制限がある: 明らかに問題のある場合でも、生成されたトークンを取り返すことはできない。
言語モデルの安全性の文脈では、部分的な安全でない生成が生成されると、言語モデルは、同様に安全でない追加のテキストを生成し続ける傾向にある。
実際これは、フロンティアモデルの安全性向上に多大な努力を払っているにもかかわらず、フロンティアモデルの安全性の整合性が野生で回避される方法である。
安全アライメントを予防(有害な応答の確率の低下)としてアプローチするパラダイムから脱却し,特別な[RESET]トークンを導入することで,言語モデルが“アンド”し,自身の安全でない世代から回復することを可能にする手法であるバックトラック手法を提案する。
本手法は, 有用性と無害性を最適化するために, SFT あるいは DPO トレーニングに組み込むことができる。
Llama-3-8Bはベースラインモデル (6.1\% $\to$ 1.5\%) よりも4倍安全である。
また,適応攻撃を含む4つの敵攻撃に対する防御も行うが,その訓練は受けていない。
関連論文リスト
- What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Single Character Perturbations Break LLM Alignment [20.79833694266861]
モデル入力の端に空間を付加するだけで、モデルディフェンスを壊すことが可能であることを示す。
トークン化されたトレーニングデータに単一空間が存在する状況は、モデルにトリガーされた時にリストを生成することを奨励する。
本研究は, 現行モデルアライメントの脆弱さを浮き彫りにして, より堅牢なアライメント手法の開発の重要性を推し進めるものである。
論文 参考訳(メタデータ) (2024-07-03T16:03:10Z) - SafeAligner: Safety Alignment against Jailbreak Attacks via Response Disparity Guidance [48.80398992974831]
SafeAlignerは、ジェイルブレイク攻撃に対する防御を強化するためのデコード段階で実装された方法論である。
安全性を高めるために訓練されたセンチネルモデルと、よりリスクの高い応答を生成するように設計されたイントルーダモデルである。
SafeAlignerは有害なトークンの発生を低減しつつ、有益トークンの可能性を高めることができることを示す。
論文 参考訳(メタデータ) (2024-06-26T07:15:44Z) - Emulated Disalignment: Safety Alignment for Large Language Models May Backfire! [65.06450319194454]
大きな言語モデル(LLM)は、人間との安全な会話を確保するために安全アライメントを行う。
本稿では,安全アライメントの反転が可能なトレーニングフリーアタック手法を提案する。
本手法をエミュレートした脱アライメント (ED) と呼ぶのは, このコントラスト分布からのサンプリングは, 安全報酬を最小限に抑えるため, 微調整の結果を確実にエミュレートするからである。
論文 参考訳(メタデータ) (2024-02-19T18:16:51Z) - Fine-tuning Aligned Language Models Compromises Safety, Even When Users
Do Not Intend To! [88.90694413503614]
LLMの安全性は微調整によって損なわれる可能性がある。
我々は、GPT-3.5の安全ガードレールを10種類の例で微調整することで、脱獄した。
我々は、協調LLMのカスタム微調整のための安全プロトコルの強化に向けたさらなる研究を提唱する。
論文 参考訳(メタデータ) (2023-10-05T17:12:17Z) - Constructing Highly Inductive Contexts for Dialogue Safety through
Controllable Reverse Generation [65.48908724440047]
そこで本稿では,ある応答に条件付けされた逆コンテキストを構築するために,エンフレバース生成と呼ばれる手法を提案する。
我々は,Blender,DialoGPT,Plato2の3種類の事前訓練済み対話モデルをテストする。
論文 参考訳(メタデータ) (2022-12-04T12:23:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。