Secrets of Edge-Informed Contrast Maximization for Event-Based Vision
- URL: http://arxiv.org/abs/2409.14611v1
- Date: Sun, 22 Sep 2024 22:22:26 GMT
- Title: Secrets of Edge-Informed Contrast Maximization for Event-Based Vision
- Authors: Pritam P. Karmokar, Quan H. Nguyen, William J. Beksi,
- Abstract summary: Event cameras capture the motion of intensity gradients (edges) in the image plane in the form of rapid asynchronous events.
Contrast histogram (CM) is an optimization framework that can reverse this effect and produce sharp spatial structures.
We propose a novel hybrid approach that extends CM from uni-modal (events only) to bi-modal (events and edges)
- Score: 6.735928398631445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Event cameras capture the motion of intensity gradients (edges) in the image plane in the form of rapid asynchronous events. When accumulated in 2D histograms, these events depict overlays of the edges in motion, consequently obscuring the spatial structure of the generating edges. Contrast maximization (CM) is an optimization framework that can reverse this effect and produce sharp spatial structures that resemble the moving intensity gradients by estimating the motion trajectories of the events. Nonetheless, CM is still an underexplored area of research with avenues for improvement. In this paper, we propose a novel hybrid approach that extends CM from uni-modal (events only) to bi-modal (events and edges). We leverage the underpinning concept that, given a reference time, optimally warped events produce sharp gradients consistent with the moving edge at that time. Specifically, we formalize a correlation-based objective to aid CM and provide key insights into the incorporation of multiscale and multireference techniques. Moreover, our edge-informed CM method yields superior sharpness scores and establishes new state-of-the-art event optical flow benchmarks on the MVSEC, DSEC, and ECD datasets.
Related papers
- Spatially-guided Temporal Aggregation for Robust Event-RGB Optical Flow Estimation [47.75348821902489]
Current optical flow methods exploit the stable appearance of frame (or RGB) data to establish robust correspondences across time.
Event cameras, on the other hand, provide high-temporal-resolution motion cues and excel in challenging scenarios.
This study introduces a novel approach that uses a spatially dense modality to guide the aggregation of the temporally dense event modality.
arXiv Detail & Related papers (2025-01-01T13:40:09Z) - EROAM: Event-based Camera Rotational Odometry and Mapping in Real-time [14.989905816510698]
EROAM is a novel event-based rotational odometry and mapping system that achieves real-time, accurate camera estimation.
We show that EROAM significantly outperforms state-of-the-art methods in terms of accuracy, robustness, and computational efficiency.
arXiv Detail & Related papers (2024-11-17T08:50:47Z) - Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
We introduce a novel self-supervised loss combining the Contrast Maximization framework with a non-linear motion prior in the form of pixel-level trajectories.
Their effectiveness is demonstrated in two scenarios: In dense continuous-time motion estimation, our method improves the zero-shot performance of a synthetically trained model by 29%.
arXiv Detail & Related papers (2024-07-15T15:18:28Z) - Event-based Video Frame Interpolation with Edge Guided Motion Refinement [28.331148083668857]
We introduce an end-to-end E-VFI learning method to efficiently utilize edge features from event signals for motion flow and warping enhancement.
Our method incorporates an Edge Guided Attentive (EGA) module, which rectifies estimated video motion through attentive aggregation.
Experiments on both synthetic and real datasets show the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-04-28T12:13:34Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Implicit Event-RGBD Neural SLAM [54.74363487009845]
Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
arXiv Detail & Related papers (2023-11-18T08:48:58Z) - Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition [3.1240043488226967]
In this paper, motivated by optical flow, the bilateral motion-oriented features are proposed.
We develop a set of multi-scale temporal representations that force the motion context to be richly described at various levels of temporal resolution.
arXiv Detail & Related papers (2022-09-26T01:36:22Z) - Asynchronous Optimisation for Event-based Visual Odometry [53.59879499700895]
Event cameras open up new possibilities for robotic perception due to their low latency and high dynamic range.
We focus on event-based visual odometry (VO)
We propose an asynchronous structure-from-motion optimisation back-end.
arXiv Detail & Related papers (2022-03-02T11:28:47Z) - TimeLens: Event-based Video Frame Interpolation [54.28139783383213]
We introduce Time Lens, a novel indicates equal contribution method that leverages the advantages of both synthesis-based and flow-based approaches.
We show an up to 5.21 dB improvement in terms of PSNR over state-of-the-art frame-based and event-based methods.
arXiv Detail & Related papers (2021-06-14T10:33:47Z) - Learning Comprehensive Motion Representation for Action Recognition [124.65403098534266]
2D CNN-based methods are efficient but may yield redundant features due to applying the same 2D convolution kernel to each frame.
Recent efforts attempt to capture motion information by establishing inter-frame connections while still suffering the limited temporal receptive field or high latency.
We propose a Channel-wise Motion Enhancement (CME) module to adaptively emphasize the channels related to dynamic information with a channel-wise gate vector.
We also propose a Spatial-wise Motion Enhancement (SME) module to focus on the regions with the critical target in motion, according to the point-to-point similarity between adjacent feature maps.
arXiv Detail & Related papers (2021-03-23T03:06:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.