論文の概要: AEANet: Affinity Enhanced Attentional Networks for Arbitrary Style Transfer
- arxiv url: http://arxiv.org/abs/2409.14652v2
- Date: Tue, 24 Sep 2024 10:46:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 21:34:58.297879
- Title: AEANet: Affinity Enhanced Attentional Networks for Arbitrary Style Transfer
- Title(参考訳): AEANet: 任意スタイル転送のためのアフィニティ強化アテンショナルネットワーク
- Authors: Gen Li, Xianqiu Zheng, Yujian Li,
- Abstract要約: 合理的な学術研究とエモーティブな芸術的創造を組み合わせた研究分野。
対象の芸術的スタイルに従ってコンテンツイメージから新たなイメージを作成し、コンテンツのテクスチャ構造情報を維持することを目的としている。
既存のスタイル転送方式は、スタイル変換時のコンテンツ画像のテクスチャ線を著しく損なうことが多い。
本稿では,コンテンツ親和性強調モジュール(CAEA),スタイル親和性強調モジュール(SAEA),ハイブリッド親和性強調モジュール(HA)を含む親和性強調ネットワークを提案する。
- 参考スコア(独自算出の注目度): 4.639424509503966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arbitrary artistic style transfer is a research area that combines rational academic study with emotive artistic creation. It aims to create a new image from a content image according to a target artistic style, maintaining the content's textural structural information while incorporating the artistic characteristics of the style image. However, existing style transfer methods often significantly damage the texture lines of the content image during the style transformation. To address these issues, we propose affinity-enhanced attentional network, which include the content affinity-enhanced attention (CAEA) module, the style affinity-enhanced attention (SAEA) module, and the hybrid attention (HA) module. The CAEA and SAEA modules first use attention to enhance content and style representations, followed by a detail enhanced (DE) module to reinforce detail features. The hybrid attention module adjusts the style feature distribution based on the content feature distribution. We also introduce the local dissimilarity loss based on affinity attention, which better preserves the affinity with content and style images. Experiments demonstrate that our work achieves better results in arbitrary style transfer than other state-of-the-art methods.
- Abstract(参考訳): アービトリ・アーティカル・スタイル・トランスファー(Arbitrary Arts Style Transfer)は、合理的な学術研究とエモーティブ・アーティカル・創造を組み合わせた研究分野である。
対象の芸術的スタイルに従ってコンテンツ画像から新たなイメージを作成し、そのスタイルイメージの芸術的特徴を取り入れつつ、コンテンツのテクスチャ構造情報を維持することを目的としている。
しかし、既存のスタイル転送方式は、スタイル変換時のコンテンツ画像のテクスチャ線を著しく損なうことが多い。
これらの課題に対処するため、コンテンツ親和性強化型注意ネットワーク(CAEA)モジュール、スタイル親和性強化型注意ネットワーク(SAEA)モジュール、ハイブリッド親和性強化型注意ネットワーク(HA)モジュールを提案する。
CAEAモジュールとSAEAモジュールは、まずコンテンツとスタイルの表現を強化するために注意を払っており、続いて詳細機能を強化するための詳細拡張(DE)モジュールがある。
ハイブリッドアテンションモジュールは、コンテンツ特徴分布に基づいてスタイル特徴分布を調整する。
また、コンテンツやスタイルイメージとの親和性をよりよく保存する親和性注意に基づく地域差分損失も導入する。
実験により、我々の研究は、他の最先端手法よりも任意のスタイル転送においてより良い結果が得られることが示された。
関連論文リスト
- DiffuseST: Unleashing the Capability of the Diffusion Model for Style Transfer [13.588643982359413]
スタイル転送は、スタイル画像の芸術的表現をコンテンツ画像の構造情報と融合させることを目的としている。
既存の方法は特定のネットワークを訓練したり、事前訓練されたモデルを使ってコンテンツやスタイルの特徴を学習する。
本稿では,テキスト埋め込みと空間的特徴を組み合わせた,新しい学習不要なスタイル伝達手法を提案する。
論文 参考訳(メタデータ) (2024-10-19T06:42:43Z) - InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation [4.1177497612346]
スタイル転送(Style Transfer)は、視覚的なスタイルを取り入れながら、オリジナルの本質を維持するイメージを作成するために設計された革新的なプロセスである。
InstantStyle-Plusは、ターゲットスタイルをシームレスに統合しながら、オリジナルコンテンツの整合性を優先するアプローチである。
論文 参考訳(メタデータ) (2024-06-30T18:05:33Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG)は、テキストプロンプトとスタイル参照画像から画像を生成することを目的としている。
我々は、事前訓練された安定拡散を利用して、誤解釈スタイルや一貫性のない意味論といった課題に対処する新しいフレームワーク、ArtWeaverを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:19:40Z) - ALADIN-NST: Self-supervised disentangled representation learning of
artistic style through Neural Style Transfer [60.6863849241972]
我々は、画像に描かれた意味的内容から、より強く絡み合った視覚芸術スタイルの表現を学習する。
スタイルと内容の絡み合いに強く対処することで、スタイル固有のメトリクスが大きく向上することを示します。
論文 参考訳(メタデータ) (2023-04-12T10:33:18Z) - Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss [51.309905690367835]
本稿では,グローバルな損失と局所的な損失を組み合わせ,構造拡張を伴う任意のスタイル転送手法を提案する。
実験結果から,視覚効果の優れた高画質画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-23T07:02:57Z) - Style Transfer with Target Feature Palette and Attention Coloring [15.775618544581885]
特徴パレットをターゲットとした新しい芸術的スタイル化手法を提案し,重要な特徴を正確に伝達することができる。
このスタイリング画像は、コア構造とコンテンツ画像の詳細の保存に長けながら、最先端のパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-11-07T08:09:20Z) - SAFIN: Arbitrary Style Transfer With Self-Attentive Factorized Instance
Normalization [71.85169368997738]
芸術的スタイル転送は、ある画像のスタイル特性を他の画像に移し、その内容を保持することを目的としている。
自己注意に基づくアプローチは、部分的な成功でこの問題に取り組みましたが、望ましくない成果物に悩まされています。
本論文は,自己意識と正規化という両世界のベストを結合することを目的とする。
論文 参考訳(メタデータ) (2021-05-13T08:01:01Z) - Arbitrary Video Style Transfer via Multi-Channel Correlation [84.75377967652753]
本稿では,マルチチャネル補正ネットワーク(MCCNet)を提案する。
MCCNetは、スタイルとコンテンツドメインの機能空間で直接動作する。
MCCが生成した出力は所望のスタイルパターンを含む特徴であり、鮮やかなスタイルのテクスチャでさらに画像にデコードできる。
論文 参考訳(メタデータ) (2020-09-17T01:30:46Z) - Arbitrary Style Transfer via Multi-Adaptation Network [109.6765099732799]
所望のスタイル転送は、内容画像と参照されたスタイル絵が与えられた場合、そのスタイル絵の色調と鮮やかなストロークパターンで内容画像を描画する。
新たな不整合損失関数により,本ネットワークは,様々な入力画像に適応する主文パターンと正確なコンテンツ構造を抽出できる。
論文 参考訳(メタデータ) (2020-05-27T08:00:22Z) - A Content Transformation Block For Image Style Transfer [16.25958537802466]
本稿では,コンテンツイメージのコンテンツとスタイルを意識したスタイル化に焦点を当てた。
写真やスタイルのサンプルに現れる類似のコンテンツを利用して、スタイルがコンテンツの詳細をどう変えるかを学ぶ。
本モデルのロバスト性と速度は,リアルタイムかつ高精細なビデオスタイリングを可能にする。
論文 参考訳(メタデータ) (2020-03-18T18:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。