Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence
- URL: http://arxiv.org/abs/2409.14660v3
- Date: Wed, 25 Sep 2024 14:36:44 GMT
- Title: Fourier neural operators for spatiotemporal dynamics in two-dimensional turbulence
- Authors: Mohammad Atif, Pulkit Dubey, Pratik P. Aghor, Vanessa Lopez-Marrero, Tao Zhang, Abdullah Sharfuddin, Kwangmin Yu, Fan Yang, Foluso Ladeinde, Yangang Liu, Meifeng Lin, Lingda Li,
- Abstract summary: We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations.
We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
- Score: 3.0954913678141627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-fidelity direct numerical simulation of turbulent flows for most real-world applications remains an outstanding computational challenge. Several machine learning approaches have recently been proposed to alleviate the computational cost even though they become unstable or unphysical for long time predictions. We identify that the Fourier neural operator (FNO) based models combined with a partial differential equation (PDE) solver can accelerate fluid dynamic simulations and thus address computational expense of large-scale turbulence simulations. We treat the FNO model on the same footing as a PDE solver and answer important questions about the volume and temporal resolution of data required to build pre-trained models for turbulence. We also discuss the pitfalls of purely data-driven approaches that need to be avoided by the machine learning models to become viable and competitive tools for long time simulations of turbulence.
Related papers
- Comparison of Generative Learning Methods for Turbulence Modeling [1.2499537119440245]
High resolution techniques such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are generally not computationally affordable.
Recent advances in machine learning, specifically in generative probabilistic models, offer promising alternatives for turbulence modeling.
This paper investigates the application of three generative models - Variational Autoencoders (VAE), Deep Conversaal Generative Adversarial Networks (DCGAN), and Denoising Diffusion Probabilistic Models (DDPM)
arXiv Detail & Related papers (2024-11-25T14:20:53Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Physics-enhanced Neural Operator for Simulating Turbulent Transport [9.923888452768919]
This paper presents a physics-enhanced neural operator (PENO) that incorporates physical knowledge of partial differential equations (PDEs) to accurately model flow dynamics.
The proposed method is evaluated through its performance on two distinct sets of 3D turbulent flow data.
arXiv Detail & Related papers (2024-05-31T20:05:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Applying Physics-Informed Enhanced Super-Resolution Generative
Adversarial Networks to Turbulent Premixed Combustion and Engine-like Flame
Kernel Direct Numerical Simulation Data [0.0]
This work advances the recently developed PIESRGAN modeling approach to turbulent premixed combustion.
The resulting model provides good results for a priori and a posteriori tests on direct numerical simulation data of a fully turbulent premixed flame kernel.
arXiv Detail & Related papers (2022-10-28T15:27:46Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Stacked Generative Machine Learning Models for Fast Approximations of
Steady-State Navier-Stokes Equations [1.4150517264592128]
We develop a weakly-supervised approach to solve the steady-state Navier-Stokes equations under various boundary conditions.
We achieve state-of-the-art results without any labeled simulation data.
We train stacked models of increasing complexity generating the numerical solutions for N-S equations.
arXiv Detail & Related papers (2021-12-13T05:08:55Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Scientific multi-agent reinforcement learning for wall-models of
turbulent flows [5.678337324555036]
We introduce scientific multi-agent reinforcement learning (SciMARL) for the discovery of wall models for large-eddy simulations.
The present simulations reduce by several orders of magnitude the computational cost over fully-resolved simulations.
arXiv Detail & Related papers (2021-06-21T14:30:10Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.