Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting
- URL: http://arxiv.org/abs/2409.14747v5
- Date: Thu, 19 Dec 2024 00:25:07 GMT
- Title: Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting
- Authors: Dasol Choi, Dongbin Na,
- Abstract summary: We propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations.
Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch.
- Score: 4.220336689294245
- License:
- Abstract: With the explosive growth of deep learning applications and increasing privacy concerns, the right to be forgotten has become a critical requirement in various AI industries. For example, given a facial recognition system, some individuals may wish to remove their personal data that might have been used in the training phase. Unfortunately, deep neural networks sometimes unexpectedly leak personal identities, making this removal challenging. While recent machine unlearning algorithms aim to enable models to forget specific data, we identify an unintended utility drop-correlation collapse-in which the essential correlations between image features and true labels weaken during the forgetting process. To address this challenge, we propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preserving task-relevant feature correlations. Our method synthesizes data samples by optimizing the feature distribution to be distinctly different from that of forget samples, achieving effective results within a single training epoch. Through extensive experiments on facial recognition datasets, we demonstrate that our approach significantly outperforms state-of-the-art machine unlearning methods in both forgetting performance and model utility preservation.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Accurate Forgetting for All-in-One Image Restoration Model [3.367455972998532]
Currently, a low-cost scheme called Machine Unlearning forgets the private data remembered in the model.
Inspired by this, we try to use this concept to bridge the gap between the fields of image restoration and security.
arXiv Detail & Related papers (2024-09-01T10:14:16Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - Dataset Condensation Driven Machine Unlearning [0.0]
Current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning.
We propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency.
We present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks.
arXiv Detail & Related papers (2024-01-31T21:48:25Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
We propose Segue: Side-information guided generative unlearnable examples.
To improve transferability, we introduce side information such as true labels and pseudo labels.
It can resist JPEG compression, adversarial training, and some standard data augmentations.
arXiv Detail & Related papers (2023-10-24T06:22:37Z) - Generative Adversarial Networks Unlearning [13.342749941357152]
Machine unlearning has emerged as a solution to erase training data from trained machine learning models.
Research on Generative Adversarial Networks (GANs) is limited due to their unique architecture, including a generator and a discriminator.
We propose a cascaded unlearning approach for both item and class unlearning within GAN models, in which the unlearning and learning processes run in a cascaded manner.
arXiv Detail & Related papers (2023-08-19T02:21:21Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.