BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach
- URL: http://arxiv.org/abs/2409.14755v1
- Date: Mon, 23 Sep 2024 07:10:11 GMT
- Title: BranchPoseNet: Characterizing tree branching with a deep learning-based pose estimation approach
- Authors: Stefano Puliti, Carolin Fischer, Rasmus Astrup,
- Abstract summary: This paper presents an automated pipeline for detecting tree whorls in proximally laser scanning data using a pose-estimation deep learning model.
Accurate whorl detection provides valuable insights into tree growth patterns, wood quality, and offers potential for use as a biometric marker to track trees throughout the forestry value chain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an automated pipeline for detecting tree whorls in proximally laser scanning data using a pose-estimation deep learning model. Accurate whorl detection provides valuable insights into tree growth patterns, wood quality, and offers potential for use as a biometric marker to track trees throughout the forestry value chain. The workflow processes point cloud data to create sectional images, which are subsequently used to identify keypoints representing tree whorls and branches along the stem. The method was tested on a dataset of destructively sampled individual trees, where the whorls were located along the stems of felled trees. The results demonstrated strong potential, with accurate identification of tree whorls and precise calculation of key structural metrics, unlocking new insights and deeper levels of information from individual tree point clouds.
Related papers
- Learning a Decision Tree Algorithm with Transformers [75.96920867382859]
We introduce MetaTree, a transformer-based model trained via meta-learning to directly produce strong decision trees.
We fit both greedy decision trees and globally optimized decision trees on a large number of datasets, and train MetaTree to produce only the trees that achieve strong generalization performance.
arXiv Detail & Related papers (2024-02-06T07:40:53Z) - ViTree: Single-path Neural Tree for Step-wise Interpretable Fine-grained
Visual Categorization [56.37520969273242]
We introduce ViTree, a novel approach for fine-grained visual categorization.
By traversing the tree paths, ViTree effectively selects patches from transformer-processed features to highlight informative local regions.
This patch and path selectivity enhances model interpretability of ViTree, enabling better insights into the model's inner workings.
arXiv Detail & Related papers (2024-01-30T14:32:25Z) - TreeLearn: A Comprehensive Deep Learning Method for Segmenting
Individual Trees from Ground-Based LiDAR Forest Point Clouds [42.87502453001109]
We propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds.
TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms.
We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software.
arXiv Detail & Related papers (2023-09-15T15:20:16Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - DeepTree: Modeling Trees with Situated Latents [8.372189962601073]
We propose a novel method for modeling trees based on learning developmental rules for branching structures instead of manually defining them.
We call our deep neural model situated latent because its behavior is determined by the intrinsic state.
Our method enables generating a wide variety of tree shapes without the need to define intricate parameters.
arXiv Detail & Related papers (2023-05-09T03:33:14Z) - Occlusion Reasoning for Skeleton Extraction of Self-Occluded Tree
Canopies [5.368313160283353]
A tree skeleton compactly describes the topological structure and contains useful information.
Our method uses an instance segmentation network to detect visible trunk, branches, and twigs.
We show that our method outperforms baseline methods in highly occluded scenes.
arXiv Detail & Related papers (2023-01-20T01:46:07Z) - Tree Detection and Diameter Estimation Based on Deep Learning [0.0]
Tree perception is an essential building block toward autonomous forestry operations.
Deep neural network models trained on our datasets achieve a precision of 90.4% for tree detection.
Results offer promising avenues toward autonomous tree felling operations.
arXiv Detail & Related papers (2022-10-31T15:51:32Z) - RLET: A Reinforcement Learning Based Approach for Explainable QA with
Entailment Trees [47.745218107037786]
We propose RLET, a Reinforcement Learning based Entailment Tree generation framework.
RLET iteratively performs single step reasoning with sentence selection and deduction generation modules.
Experiments on three settings of the EntailmentBank dataset demonstrate the strength of using RL framework.
arXiv Detail & Related papers (2022-10-31T06:45:05Z) - Tree Reconstruction using Topology Optimisation [0.685316573653194]
We present a general method for extracting the branch structure of trees from point cloud data.
We discuss the benefits and drawbacks of this novel approach to tree structure reconstruction.
Our method generates detailed and accurate tree structures in most cases.
arXiv Detail & Related papers (2022-05-26T07:08:32Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.