Past Meets Present: Creating Historical Analogy with Large Language Models
- URL: http://arxiv.org/abs/2409.14820v1
- Date: Mon, 23 Sep 2024 08:52:09 GMT
- Title: Past Meets Present: Creating Historical Analogy with Large Language Models
- Authors: Nianqi Li, Siyu Yuan, Jiangjie Chen, Jiaqing Liang, Feng Wei, Zujie Liang, Deqing Yang, Yanghua Xiao,
- Abstract summary: We focus on the historical analogy acquisition task, which aims to acquire analogous historical events for a given event.
We propose a self-reflection method to mitigate hallucinations and stereotypes when LLMs generate historical analogies.
- Score: 46.57886941642625
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Historical analogies, which compare known past events with contemporary but unfamiliar events, are important abilities that help people make decisions and understand the world. However, research in applied history suggests that people have difficulty finding appropriate analogies. And previous studies in the AI community have also overlooked historical analogies. To fill this gap, in this paper, we focus on the historical analogy acquisition task, which aims to acquire analogous historical events for a given event. We explore retrieval and generation methods for acquiring historical analogies based on different large language models (LLMs). Furthermore, we propose a self-reflection method to mitigate hallucinations and stereotypes when LLMs generate historical analogies. Through human evaluations and our specially designed automatic multi-dimensional assessment, we find that LLMs generally have a good potential for historical analogies. And the performance of the models can be further improved by using our self-reflection method.
Related papers
- BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis [62.60458710368311]
This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System.
It aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments.
It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers.
arXiv Detail & Related papers (2024-04-23T21:37:22Z) - ParallelPARC: A Scalable Pipeline for Generating Natural-Language Analogies [16.92480305308536]
We develop a pipeline for creating complex, paragraph-based analogies.
We publish a gold-set, validated by humans, and a silver-set, generated automatically.
We demonstrate that our silver-set is useful for training models.
arXiv Detail & Related papers (2024-03-02T08:53:40Z) - AnaloBench: Benchmarking the Identification of Abstract and Long-context Analogies [19.613777134600408]
Analogical thinking allows humans to solve problems in creative ways.
Can language models (LMs) do the same?
benchmarking approach focuses on aspects of this ability that are common among humans.
arXiv Detail & Related papers (2024-02-19T18:56:44Z) - PHD: Pixel-Based Language Modeling of Historical Documents [55.75201940642297]
We propose a novel method for generating synthetic scans to resemble real historical documents.
We pre-train our model, PHD, on a combination of synthetic scans and real historical newspapers from the 1700-1900 period.
We successfully apply our model to a historical QA task, highlighting its usefulness in this domain.
arXiv Detail & Related papers (2023-10-22T08:45:48Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
We evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus.
textscStory Analogy contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory.
We observe that the data in textscStory Analogy can improve the quality of analogy generation in large language models.
arXiv Detail & Related papers (2023-10-19T16:29:23Z) - Can language models learn analogical reasoning? Investigating training objectives and comparisons to human performance [0.0]
We test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans.
Our experiments find that models are able to learn analogical reasoning, even with a small amount of data.
arXiv Detail & Related papers (2023-10-09T10:34:38Z) - ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base [51.777618249271725]
ANALOGYKB is a million-scale analogy knowledge base derived from existing knowledge graphs (KGs)
It identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs)
arXiv Detail & Related papers (2023-05-10T09:03:01Z) - Automatic Item Generation of Figural Analogy Problems: A Review and
Outlook [3.486683381782259]
Figural analogy problems have long been a widely used format in human intelligence tests.
Recent development of data-driven AI models for reasoning about figural analogies has further expanded.
This paper reviews the important works of automatic item generation of figural analogies for both human intelligence tests and data-driven AI models.
arXiv Detail & Related papers (2022-01-20T20:51:10Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories.
We employ multi-task learning which combines a discriminative objective to distinguish true and fake stories.
Our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
arXiv Detail & Related papers (2020-01-15T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.