Modeling Understanding of Story-Based Analogies Using Large Language Models
- URL: http://arxiv.org/abs/2507.10957v1
- Date: Tue, 15 Jul 2025 03:40:21 GMT
- Title: Modeling Understanding of Story-Based Analogies Using Large Language Models
- Authors: Kalit Inani, Keshav Kabra, Vijay Marupudi, Sashank Varma,
- Abstract summary: Recent advancements in Large Language Models have brought them closer to matching human cognition across a variety of tasks.<n>How well do these models align with human performance in detecting and mapping analogies?
- Score: 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models (LLMs) have brought them closer to matching human cognition across a variety of tasks. How well do these models align with human performance in detecting and mapping analogies? Prior research has shown that LLMs can extract similarities from analogy problems but lack robust human-like reasoning. Building on Webb, Holyoak, and Lu (2023), the current study focused on a story-based analogical mapping task and conducted a fine-grained evaluation of LLM reasoning abilities compared to human performance. First, it explored the semantic representation of analogies in LLMs, using sentence embeddings to assess whether they capture the similarity between the source and target texts of an analogy, and the dissimilarity between the source and distractor texts. Second, it investigated the effectiveness of explicitly prompting LLMs to explain analogies. Throughout, we examine whether LLMs exhibit similar performance profiles to those observed in humans by evaluating their reasoning at the level of individual analogies, and not just at the level of overall accuracy (as prior studies have done). Our experiments include evaluating the impact of model size (8B vs. 70B parameters) and performance variation across state-of-the-art model architectures such as GPT-4 and LLaMA3. This work advances our understanding of the analogical reasoning abilities of LLMs and their potential as models of human reasoning.
Related papers
- Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - LLMs as Models for Analogical Reasoning [14.412456982731467]
Analogical reasoning is fundamental to human cognition and learning.<n>Recent studies have shown that large language models can sometimes match humans in analogical reasoning tasks.
arXiv Detail & Related papers (2024-06-19T20:07:37Z) - CausalGym: Benchmarking causal interpretability methods on linguistic
tasks [52.61917615039112]
We use CausalGym to benchmark the ability of interpretability methods to causally affect model behaviour.
We study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods.
We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena.
arXiv Detail & Related papers (2024-02-19T21:35:56Z) - Using Counterfactual Tasks to Evaluate the Generality of Analogical
Reasoning in Large Language Models [7.779982757267302]
We investigate the generality of analogy-making abilities previously claimed for large language models (LLMs)
We show that while the performance of humans remains high for all the problems, the GPT models' performance declines sharply on the counterfactual set.
arXiv Detail & Related papers (2024-02-14T05:52:23Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - StoryAnalogy: Deriving Story-level Analogies from Large Language Models
to Unlock Analogical Understanding [72.38872974837462]
We evaluate the ability to identify and generate analogies by constructing a first-of-its-kind large-scale story-level analogy corpus.
textscStory Analogy contains 24K story pairs from diverse domains with human annotations on two similarities from the extended Structure-Mapping Theory.
We observe that the data in textscStory Analogy can improve the quality of analogy generation in large language models.
arXiv Detail & Related papers (2023-10-19T16:29:23Z) - Can language models learn analogical reasoning? Investigating training objectives and comparisons to human performance [0.0]
We test several ways to learn basic analogical reasoning, specifically focusing on analogies that are more typical of what is used to evaluate analogical reasoning in humans.
Our experiments find that models are able to learn analogical reasoning, even with a small amount of data.
arXiv Detail & Related papers (2023-10-09T10:34:38Z) - ANALOGYKB: Unlocking Analogical Reasoning of Language Models with A Million-scale Knowledge Base [51.777618249271725]
ANALOGYKB is a million-scale analogy knowledge base derived from existing knowledge graphs (KGs)
It identifies two types of analogies from the KGs: 1) analogies of the same relations, which can be directly extracted from the KGs, and 2) analogies of analogous relations, which are identified with a selection and filtering pipeline enabled by large language models (LLMs)
arXiv Detail & Related papers (2023-05-10T09:03:01Z) - ANALOGICAL -- A Novel Benchmark for Long Text Analogy Evaluation in
Large Language Models [1.4546044532817048]
ANALOGICAL is a new benchmark to intrinsically evaluate large language models.
Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.
arXiv Detail & Related papers (2023-05-08T21:12:20Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.