論文の概要: Towards Ground-truth-free Evaluation of Any Segmentation in Medical Images
- arxiv url: http://arxiv.org/abs/2409.14874v2
- Date: Tue, 24 Sep 2024 09:56:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:39:08.808462
- Title: Towards Ground-truth-free Evaluation of Any Segmentation in Medical Images
- Title(参考訳): 医用画像における任意のセグメンテーションの地道的評価に向けて
- Authors: Ahjol Senbi, Tianyu Huang, Fei Lyu, Qing Li, Yuhui Tao, Wei Shao, Qiang Chen, Chengyan Wang, Shuo Wang, Tao Zhou, Yizhe Zhang,
- Abstract要約: 本研究では,Segment Anything Model (SAM) が生成するセグメンテーションの質と,医療画像におけるその変種を評価するために,ゼロトラストフリー評価モデルを構築した。
この評価モデルは、入力画像と対応するセグメンテーション予測との一貫性と一貫性を解析することにより、セグメンテーション品質スコアを推定する。
- 参考スコア(独自算出の注目度): 22.36128130052757
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the feasibility and potential of building a ground-truth-free evaluation model to assess the quality of segmentations generated by the Segment Anything Model (SAM) and its variants in medical imaging. This evaluation model estimates segmentation quality scores by analyzing the coherence and consistency between the input images and their corresponding segmentation predictions. Based on prior research, we frame the task of training this model as a regression problem within a supervised learning framework, using Dice scores (and optionally other metrics) along with mean squared error to compute the training loss. The model is trained utilizing a large collection of public datasets of medical images with segmentation predictions from SAM and its variants. We name this model EvanySeg (Evaluation of Any Segmentation in Medical Images). Our exploration of convolution-based models (e.g., ResNet) and transformer-based models (e.g., ViT) suggested that ViT yields better performance for this task. EvanySeg can be employed for various tasks, including: (1) identifying poorly segmented samples by detecting low-percentile segmentation quality scores; (2) benchmarking segmentation models without ground truth by averaging quality scores across test samples; (3) alerting human experts to poor-quality segmentation predictions during human-AI collaboration by applying a threshold within the score space; and (4) selecting the best segmentation prediction for each test sample at test time when multiple segmentation models are available, by choosing the prediction with the highest quality score. Models and code will be made available at https://github.com/ahjolsenbics/EvanySeg.
- Abstract(参考訳): 本研究では,Segment Anything Model (SAM) が生み出すセグメンテーションの質を評価するために,地中真実のない評価モデルの構築の可能性と可能性を検討する。
この評価モデルは、入力画像と対応するセグメンテーション予測との一貫性と一貫性を解析することにより、セグメンテーション品質スコアを推定する。
先行研究に基づいて、Diceスコア(およびオプションで他のメトリクス)と平均2乗誤差を用いて、教師付き学習フレームワーク内の回帰問題としてこのモデルをトレーニングするタスクを、トレーニング損失を計算する。
このモデルは、SAMとその変種からのセグメンテーション予測を備えた、医療画像の公開データセットの大規模な集合を利用して訓練されている。
このモデルをEvanySeg (Evaluation of Any Segmentation in Medical Images)と名付けた。
コンボリューションベースモデル(ResNetなど)とトランスフォーマーベースモデル(ViTなど)を探索した結果、ViTはこのタスクにより良いパフォーマンスをもたらすことが示唆された。
EvanySegは、(1)低パーセントセグメンテーション品質スコアを検出して、粗いセグメンテーションサンプルを識別すること、(2)テストサンプルの平均品質スコアを平均化することにより、根拠のないセグメンテーションモデルをベンチマークすること、(3)スコア空間内のしきい値を適用して、人間とAIのコラボレーション中に、品質セグメンテーション予測に不適切なセグメンテーションを警告すること、(4)複数のセグメンテーションモデルが利用可能なテスト時に、テストサンプル毎に最適なセグメンテーション予測を選択すること、など、様々なタスクに利用できる。
モデルとコードはhttps://github.com/ahjolsenbics/EvanySeg.comで公開される。
関連論文リスト
- BEVal: A Cross-dataset Evaluation Study of BEV Segmentation Models for Autonomous Driving [3.4113606473878386]
我々は最先端のBEVセグメンテーションモデルの包括的クロスデータセット評価を行う。
本稿では,カメラやLiDARなどの各種センサがモデルの一般化能力に与える影響について検討する。
論文 参考訳(メタデータ) (2024-08-29T07:49:31Z) - SQA-SAM: Segmentation Quality Assessment for Medical Images Utilizing
the Segment Anything Model [35.569906173295834]
医用画像セグメンテーションの品質評価の精度を高めるために,SQA-SAMと呼ばれる新しいSQA手法を提案する。
医用画像分割モデル(MedSeg)がテスト画像の予測を生成すると、予測に基づいて視覚的プロンプトを生成し、SAMを用いて視覚的プロンプトに対応するセグメンテーションマップを生成する。
MedSegのセグメンテーションがSAMのセグメンテーションとどのように一致しているかは、MedSegのセグメンテーションがオブジェクトの認識とイメージ領域のパーティションの一般的な認識といかにうまく一致しているかを示している。
論文 参考訳(メタデータ) (2023-12-15T15:49:53Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - A quality assurance framework for real-time monitoring of deep learning
segmentation models in radiotherapy [3.5752677591512487]
この研究は、品質保証フレームワークを確立するために、心臓のサブ構造セグメンテーションを例として用いている。
心電図(CT)画像と241例の心電図を用いたベンチマークデータセットを収集した。
訓練されたDenoising Autoencoder(DAE)と2つの手動特徴を利用して画像領域シフト検出器を開発した。
Dice similarity coefficient (DSC) を用いて患者ごとのセグメンテーション精度を予測するための回帰モデルを構築した。
論文 参考訳(メタデータ) (2023-05-19T14:51:05Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - VAESim: A probabilistic approach for self-supervised prototype discovery [0.23624125155742057]
条件付き変分オートエンコーダに基づく画像階層化アーキテクチャを提案する。
我々は、連続した潜伏空間を用いて障害の連続を表現し、訓練中にクラスターを見つけ、画像/患者の成層に使用することができる。
本手法は,標準VAEに対して,分類タスクで測定されたkNN精度において,ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-25T17:55:31Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。