DSG-KD: Knowledge Distillation from Domain-Specific to General Language Models
- URL: http://arxiv.org/abs/2409.14904v1
- Date: Mon, 23 Sep 2024 10:59:02 GMT
- Title: DSG-KD: Knowledge Distillation from Domain-Specific to General Language Models
- Authors: Sangyeon Cho, Jangyeong Jeon, Dongjoon Lee, Changhee Lee, Junyeong Kim,
- Abstract summary: This study investigates emergency/non-emergency classification tasks based on electronic medical record (EMR) data obtained from pediatric emergency departments (PEDs) in Korea.
Existing domain-specific pre-trained language models underperform compared to general language models in handling N-lingual free-text data characteristics.
We propose a domain knowledge transfer methodology that leverages knowledge distillation to infuse general language models with domain-specific knowledge via fine-tuning.
- Score: 8.328673243329794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of pre-trained language models fine-tuned to address specific downstream tasks is a common approach in natural language processing (NLP). However, acquiring domain-specific knowledge via fine-tuning is challenging. Traditional methods involve pretraining language models using vast amounts of domain-specific data before fine-tuning for particular tasks. This study investigates emergency/non-emergency classification tasks based on electronic medical record (EMR) data obtained from pediatric emergency departments (PEDs) in Korea. Our findings reveal that existing domain-specific pre-trained language models underperform compared to general language models in handling N-lingual free-text data characteristics of non-English-speaking regions. To address these limitations, we propose a domain knowledge transfer methodology that leverages knowledge distillation to infuse general language models with domain-specific knowledge via fine-tuning. This study demonstrates the effective transfer of specialized knowledge between models by defining a general language model as the student model and a domain-specific pre-trained model as the teacher model. In particular, we address the complexities of EMR data obtained from PEDs in non-English-speaking regions, such as Korea, and demonstrate that the proposed method enhances classification performance in such contexts. The proposed methodology not only outperforms baseline models on Korean PED EMR data, but also promises broader applicability in various professional and technical domains. In future works, we intend to extend this methodology to include diverse non-English-speaking regions and address additional downstream tasks, with the aim of developing advanced model architectures using state-of-the-art KD techniques. The code is available in https://github.com/JoSangYeon/DSG-KD.
Related papers
- A Practical Guide to Fine-tuning Language Models with Limited Data [9.413178499853156]
Employing pre-trained Large Language Models (LLMs) has become the de facto standard in Natural Language Processing (NLP) despite their extensive data requirements.
Motivated by the recent surge in research focused on training LLMs with limited data, this paper surveys recent transfer learning approaches to optimize model performance in downstream tasks where data is scarce.
arXiv Detail & Related papers (2024-11-14T15:55:37Z) - Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
This paper explores the feasibility of employing smaller, domain-specific encoder LMs alongside prompting techniques to enhance performance in specialized contexts.
Our study concentrates on the Italian bureaucratic and legal language, experimenting with both general-purpose and further pre-trained encoder-only models.
The results indicate that while further pre-trained models may show diminished robustness in general knowledge, they exhibit superior adaptability for domain-specific tasks, even in a zero-shot setting.
arXiv Detail & Related papers (2024-07-30T08:50:16Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
We introduce a novel MoE-CT architecture that separates the base model's learning from the multilingual expansion process.
Our design freezes the original LLM parameters, thus safeguarding its performance in high-resource languages, while an appended MoE module, trained on diverse language datasets, augments low-resource language proficiency.
arXiv Detail & Related papers (2024-06-25T11:03:45Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
Large Language Models (LLMs) are becoming crucial across various fields, emphasizing the urgency for high-quality models in underrepresented languages.
This study explores the unique challenges faced by low-resource languages, such as data scarcity, model selection, evaluation, and computational limitations.
arXiv Detail & Related papers (2024-05-07T21:58:45Z) - Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding [16.220303664681172]
We pre-trained several German medical language models on 2.4B tokens derived from translated public English medical data and 3B tokens of German clinical data.
The resulting models were evaluated on various German downstream tasks, including named entity recognition (NER), multi-label classification, and extractive question answering.
We conclude that continuous pre-training has demonstrated the ability to match or even exceed the performance of clinical models trained from scratch.
arXiv Detail & Related papers (2024-04-08T17:24:04Z) - Language Model Adaptation to Specialized Domains through Selective
Masking based on Genre and Topical Characteristics [4.9639158834745745]
We introduce an innovative masking approach leveraging genre and topicality information to tailor language models to specialized domains.
Our method incorporates a ranking process that prioritizes words based on their significance, subsequently guiding the masking procedure.
Experiments conducted using continual pre-training within the legal domain have underscored the efficacy of our approach on the LegalGLUE benchmark in the English language.
arXiv Detail & Related papers (2024-02-19T10:43:27Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z) - CALM: Continuous Adaptive Learning for Language Modeling [18.72860206714457]
Training large language representation models has become a standard in the natural language processing community.
We demonstrate that in practice these pre-trained models present performance deterioration in the form of catastrophic forgetting.
We propose CALM, Continuous Adaptive Learning for Language Modeling: techniques to render models which retain knowledge across multiple domains.
arXiv Detail & Related papers (2020-04-08T03:51:17Z) - Unsupervised Domain Clusters in Pretrained Language Models [61.832234606157286]
We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision.
We propose domain data selection methods based on such models.
We evaluate our data selection methods for neural machine translation across five diverse domains.
arXiv Detail & Related papers (2020-04-05T06:22:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.