論文の概要: Adaptive Learning on User Segmentation: Universal to Specific Representation via Bipartite Neural Interaction
- arxiv url: http://arxiv.org/abs/2409.14945v1
- Date: Mon, 23 Sep 2024 12:02:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 15:15:39.776172
- Title: Adaptive Learning on User Segmentation: Universal to Specific Representation via Bipartite Neural Interaction
- Title(参考訳): ユーザセグメンテーションにおける適応学習--バイパート・ニューラルインタラクションによる表現の普遍化
- Authors: Xiaoyu Tan, Yongxin Deng, Chao Qu, Siqiao Xue, Xiaoming Shi, James Zhang, Xihe Qiu,
- Abstract要約: 本稿では,情報ボトルネックを通じて汎用ユーザ表現を学習する新しい学習フレームワークを提案する。
次に、ニューラルネットワークを通じてセグメンテーション特化あるいはタスク特化表現をマージし、学習する。
提案手法は2つのオープンソースベンチマーク、2つのオフラインビジネスデータセットで評価され、ユーザのCVRを予測するために2つのオンラインマーケティングアプリケーションにデプロイされる。
- 参考スコア(独自算出の注目度): 15.302921887305283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, models for user representation learning have been widely applied in click-through-rate (CTR) and conversion-rate (CVR) prediction. Usually, the model learns a universal user representation as the input for subsequent scenario-specific models. However, in numerous industrial applications (e.g., recommendation and marketing), the business always operates such applications as various online activities among different user segmentation. These segmentation are always created by domain experts. Due to the difference in user distribution (i.e., user segmentation) and business objectives in subsequent tasks, learning solely on universal representation may lead to detrimental effects on both model performance and robustness. In this paper, we propose a novel learning framework that can first learn general universal user representation through information bottleneck. Then, merge and learn a segmentation-specific or a task-specific representation through neural interaction. We design the interactive learning process by leveraging a bipartite graph architecture to model the representation learning and merging between contextual clusters and each user segmentation. Our proposed method is evaluated in two open-source benchmarks, two offline business datasets, and deployed on two online marketing applications to predict users' CVR. The results demonstrate that our method can achieve superior performance and surpass the baseline methods.
- Abstract(参考訳): 近年,ユーザ表現学習のモデルがクリックスルーレート(CTR)とコンバージョンレート(CVR)の予測に広く適用されている。
通常、モデルはその後のシナリオ固有のモデルの入力として普遍的なユーザ表現を学習する。
しかし、多くの産業アプリケーション(レコメンデーションやマーケティングなど)において、ビジネスは常に異なるユーザセグメンテーションの様々なオンラインアクティビティのようなアプリケーションを運用している。
これらのセグメンテーションは常にドメインの専門家によって作成されます。
ユーザ分散(すなわち、ユーザセグメンテーション)とその後のタスクにおけるビジネス目的の相違により、普遍的な表現のみに基づく学習は、モデルの性能と堅牢性の両方に有害な影響をもたらす可能性がある。
本稿では,情報ボトルネックを通じて汎用ユーザ表現を学習できる新しい学習フレームワークを提案する。
次に、ニューラルネットワークを通じてセグメンテーション特化あるいはタスク特化表現をマージし、学習する。
本研究では,2部グラフアーキテクチャを活用して対話型学習プロセスを設計し,コンテキストクラスタと各ユーザセグメンテーション間の表現学習とマージをモデル化する。
提案手法は2つのオープンソースベンチマーク、2つのオフラインビジネスデータセットで評価され、ユーザのCVRを予測するために2つのオンラインマーケティングアプリケーションにデプロイされる。
その結果,本手法は性能が向上し,ベースライン法を超越できることが示唆された。
関連論文リスト
- Neural Clustering based Visual Representation Learning [61.72646814537163]
クラスタリングは、機械学習とデータ分析における最も古典的なアプローチの1つである。
本稿では,特徴抽出をデータから代表者を選択するプロセスとみなすクラスタリング(FEC)による特徴抽出を提案する。
FECは、個々のクラスタにピクセルをグループ化して抽象的な代表を配置し、現在の代表とピクセルの深い特徴を更新する。
論文 参考訳(メタデータ) (2024-03-26T06:04:50Z) - Generalized User Representations for Transfer Learning [6.953653891411339]
本稿では,大規模レコメンデーションシステムにおけるユーザ表現のための新しいフレームワークを提案する。
提案手法は,表現学習と伝達学習を組み合わせた2段階の手法を用いる。
提案するフレームワークは,代替手法と比較して,インフラコストを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-03-01T15:05:21Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
近年のインタラクティブセグメンテーション手法では,入力としてソースイメージ,ユーザガイダンス,従来予測されていたマスクを反復的に取り込んでいる。
本稿では,本質的な相違点に基づいてモデリングコンポーネントを分離するFDRN(Feature Decoupling-Recycling Network)を提案する。
論文 参考訳(メタデータ) (2023-08-07T12:26:34Z) - Personalized Federated Learning with Feature Alignment and Classifier
Collaboration [13.320381377599245]
データの不均一性は、フェデレートラーニングにおける最も難しい問題の1つです。
ディープニューラルネットワークベースのタスクにおけるそのようなアプローチの1つは、共有された特徴表現を採用し、クライアントごとにカスタマイズされた分類子ヘッドを学ぶことである。
本研究では,グローバルなセマンティックな知識を活用して,より優れた表現を学習することで,ローカル・グローバルな特徴アライメントを実現する。
論文 参考訳(メタデータ) (2023-06-20T19:58:58Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - Empowering General-purpose User Representation with Full-life Cycle
Behavior Modeling [11.698166058448555]
本稿では,この課題に対処するために,フルライフサイクルユーザ表現モデル(LURM)と呼ばれる新しいフレームワークを提案する。
LURMは2つのカスケードサブモデルで構成されている: (I) Bag-of-Interests (BoI) は、任意の期間におけるユーザの振る舞いを超高次元のスパースベクトル(例:105)にエンコードする。
SMENは、ユーザ関心の異なる側面を学習できる新しいマルチアンカーモジュールの恩恵を受け、ほぼ次元の削減を実現している。
論文 参考訳(メタデータ) (2021-10-20T08:24:44Z) - Learning Dual Dynamic Representations on Time-Sliced User-Item
Interaction Graphs for Sequential Recommendation [62.30552176649873]
シーケンシャルレコメンデーションのための動的表現学習モデル(DRL-SRe)を考案する。
両面から動的に特徴付けるためのユーザ・イテム相互作用をモデル化するため,提案モデルでは,時間スライス毎にグローバルなユーザ・イテム相互作用グラフを構築した。
モデルが微粒な時間情報を捕捉することを可能にするため,連続時間スライス上での補助的時間予測タスクを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:44:27Z) - Interest-oriented Universal User Representation via Contrastive Learning [28.377233340976197]
我々は2つの視点から普遍的なユーザ表現を改善することを試みる。
表現モデルトレーニングを導くために、対照的な自己教師型学習パラダイムが提示される。
新規な多目的抽出モジュールが提示される。
論文 参考訳(メタデータ) (2021-09-18T07:42:00Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - Exploiting Behavioral Consistence for Universal User Representation [11.290137806288191]
我々は普遍的ユーザ表現モデルの開発に注力する。
得られた普遍表現には豊富な情報が含まれることが予想される。
行動データを普遍表現にエンコードする自己監視型ユーザモデリングネットワーク(SUMN)を提案する。
論文 参考訳(メタデータ) (2020-12-11T06:10:14Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。