論文の概要: Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond
- arxiv url: http://arxiv.org/abs/2409.14993v1
- Date: Mon, 23 Sep 2024 13:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 15:05:21.904168
- Title: Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond
- Title(参考訳): マルチモーダル生成AI - マルチモーダルLLM,拡散,その他
- Authors: Hong Chen, Xin Wang, Yuwei Zhou, Bin Huang, Yipeng Zhang, Wei Feng, Houlun Chen, Zeyang Zhang, Siao Tang, Wenwu Zhu,
- Abstract要約: マルチモーダル生成AIは、学術と産業の両方で注目を集めている。
理解と生成の両方に統一されたモデルを持つことは可能か?
- 参考スコア(独自算出の注目度): 48.43910061720815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-modal generative AI has received increasing attention in both academia and industry. Particularly, two dominant families of techniques are: i) The multi-modal large language model (MLLM) such as GPT-4V, which shows impressive ability for multi-modal understanding; ii) The diffusion model such as Sora, which exhibits remarkable multi-modal powers, especially with respect to visual generation. As such, one natural question arises: Is it possible to have a unified model for both understanding and generation? To answer this question, in this paper, we first provide a detailed review of both MLLM and diffusion models, including their probabilistic modeling procedure, multi-modal architecture design, and advanced applications to image/video large language models as well as text-to-image/video generation. Then, we discuss the two important questions on the unified model: i) whether the unified model should adopt the auto-regressive or diffusion probabilistic modeling, and ii) whether the model should utilize a dense architecture or the Mixture of Experts(MoE) architectures to better support generation and understanding, two objectives. We further provide several possible strategies for building a unified model and analyze their potential advantages and disadvantages. We also summarize existing large-scale multi-modal datasets for better model pretraining in the future. To conclude the paper, we present several challenging future directions, which we believe can contribute to the ongoing advancement of multi-modal generative AI.
- Abstract(参考訳): マルチモーダル生成AIは、学術と産業の両方で注目を集めている。
特に、技術の一流は2つある。
一 マルチモーダル理解能力を示すGPT-4Vのようなマルチモーダル大言語モデル(MLLM)
二 ソラのような拡散モデルであって、特に視覚発生に関して顕著なマルチモーダル能力を示すもの。
理解と生成の両方に統一されたモデルを持つことは可能か?
本稿では,MLLMと拡散モデルの両方について,確率論的モデリング手法,マルチモーダルアーキテクチャ設計,画像・ビデオ大言語モデルへの先進的応用,テキスト・ツー・イメージ・ビデオ生成など,詳細なレビューを行う。
次に、統一モデルに関する2つの重要な疑問について論じる。
一 統合モデルが自己回帰的又は拡散確率的モデリングを採用するべきか否か、及び
二 モデルは、密集したアーキテクチャ又は混合専門家(MoE)アーキテクチャを用いて、生成と理解をより良く支援すべきか、二つの目的。
さらに、統一モデルを構築するためのいくつかの可能な戦略を提供し、その潜在的な利点と欠点を分析します。
また、将来モデル事前トレーニングを改善するために、既存の大規模マルチモーダルデータセットを要約する。
本稿の結論として,多モード生成型AIの進歩に寄与すると考えられる,いくつかの挑戦的な今後の方向性を示す。
関連論文リスト
- Learning Multimodal Latent Generative Models with Energy-Based Prior [3.6648642834198797]
EBMに潜時生成モデルを統合する新しいフレームワークを提案する。
このアプローチは、より表現力があり、情報的であり、複数のモダリティにまたがる情報のより良いキャプチャをもたらす。
論文 参考訳(メタデータ) (2024-09-30T01:38:26Z) - Generalist Multimodal AI: A Review of Architectures, Challenges and Opportunities [5.22475289121031]
マルチモーダルモデルは、人工知能の今後の進歩にとって重要な要素であると期待されている。
この研究は、新しいアーキテクチャと特定の分類学を訓練することで、一般のマルチモーダルモデルに対する新たな視点を提供する。
論文 参考訳(メタデータ) (2024-06-08T15:30:46Z) - SEED-X: Multimodal Models with Unified Multi-granularity Comprehension and Generation [61.392147185793476]
統一的で汎用的な基礎モデル、すなわちSEED-Xを提案する。
SEED-Xは、理解および生成タスクのための多粒度視覚意味論をモデル化することができる。
我々の研究が、現実世界のアプリケーションで多目的なマルチモーダル基盤モデルによって達成できるものについて、将来の研究に刺激を与えることを期待しています。
論文 参考訳(メタデータ) (2024-04-22T17:56:09Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - Explaining latent representations of generative models with large multimodal models [5.9908087713968925]
データ生成潜在因子の解釈可能な表現を学習することは、人工知能の発展にとって重要なトピックである。
大規模マルチモーダルモデルを用いた生成モデルにおいて,各潜伏変数を包括的に記述するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T19:28:33Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介し、大規模マルチモーダルシーケンスで訓練する。
Emu2は、マルチモーダルなインコンテキスト学習能力を示し、オンザフライ推論を必要とするタスクを解決しようとさえしている。
論文 参考訳(メタデータ) (2023-12-20T18:59:58Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiVizは、解釈可能性の問題を4段階に足場化することで、マルチモーダルモデルの振る舞いを分析する手法である。
MultiVizの相補的な段階は、モデル予測をシミュレートし、機能に解釈可能な概念を割り当て、モデル誤分類のエラー解析を行い、エラー解析からモデルデバッグへの洞察を利用することを可能にする。
論文 参考訳(メタデータ) (2022-06-30T18:42:06Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。