Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer
- URL: http://arxiv.org/abs/2409.15117v2
- Date: Fri, 27 Sep 2024 13:32:18 GMT
- Title: Diffusion-based RGB-D Semantic Segmentation with Deformable Attention Transformer
- Authors: Minh Bui, Kostas Alexis,
- Abstract summary: We introduce a diffusion-based framework to address the RGB-D semantic segmentation problem.
We demonstrate that utilizing a Deformable Attention Transformer as the encoder to extract features from depth images effectively captures the characteristics of invalid regions in depth measurements.
- Score: 10.982521876026281
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Vision-based perception and reasoning is essential for scene understanding in any autonomous system. RGB and depth images are commonly used to capture both the semantic and geometric features of the environment. Developing methods to reliably interpret this data is critical for real-world applications, where noisy measurements are often unavoidable. In this work, we introduce a diffusion-based framework to address the RGB-D semantic segmentation problem. Additionally, we demonstrate that utilizing a Deformable Attention Transformer as the encoder to extract features from depth images effectively captures the characteristics of invalid regions in depth measurements. Our generative framework shows a greater capacity to model the underlying distribution of RGB-D images, achieving robust performance in challenging scenarios with significantly less training time compared to discriminative methods. Experimental results indicate that our approach achieves State-of-the-Art performance on both the NYUv2 and SUN-RGBD datasets in general and especially in the most challenging of their image data. Our project page will be available at https://diffusionmms.github.io/
Related papers
- Semantic RGB-D Image Synthesis [22.137419841504908]
We introduce semantic RGB-D image synthesis to address this problem.
Current approaches, however, are uni-modal and cannot cope with multi-modal data.
We propose a generator for multi-modal data that separates modal-independent information of the semantic layout from the modal-dependent information.
arXiv Detail & Related papers (2023-08-22T11:16:24Z) - Attentive Multimodal Fusion for Optical and Scene Flow [24.08052492109655]
Existing methods typically rely solely on RGB images or fuse the modalities at later stages.
We propose a novel deep neural network approach named FusionRAFT, which enables early-stage information fusion between sensor modalities.
Our approach exhibits improved robustness in the presence of noise and low-lighting conditions that affect the RGB images.
arXiv Detail & Related papers (2023-07-28T04:36:07Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - Spherical Space Feature Decomposition for Guided Depth Map
Super-Resolution [123.04455334124188]
Guided depth map super-resolution (GDSR) aims to upsample low-resolution (LR) depth maps with additional information involved in high-resolution (HR) RGB images from the same scene.
In this paper, we propose the Spherical Space feature Decomposition Network (SSDNet) to solve the above issues.
Our method can achieve state-of-the-art results on four test datasets, as well as successfully generalize to real-world scenes.
arXiv Detail & Related papers (2023-03-15T21:22:21Z) - DCANet: Differential Convolution Attention Network for RGB-D Semantic
Segmentation [2.2032272277334375]
We propose a pixel differential convolution attention (DCA) module to consider geometric information and local-range correlations for depth data.
We extend DCA to ensemble differential convolution attention (EDCA) which propagates long-range contextual dependencies.
A two-branch network built with DCA and EDCA, called Differential Convolutional Network (DCANet), is proposed to fuse local and global information of two-modal data.
arXiv Detail & Related papers (2022-10-13T05:17:34Z) - Boosting RGB-D Saliency Detection by Leveraging Unlabeled RGB Images [89.81919625224103]
Training deep models for RGB-D salient object detection (SOD) often requires a large number of labeled RGB-D images.
We present a Dual-Semi RGB-D Salient Object Detection Network (DS-Net) to leverage unlabeled RGB images for boosting RGB-D saliency detection.
arXiv Detail & Related papers (2022-01-01T03:02:27Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Is Depth Really Necessary for Salient Object Detection? [50.10888549190576]
We make the first attempt in realizing an unified depth-aware framework with only RGB information as input for inference.
Not only surpasses the state-of-the-art performances on five public RGB SOD benchmarks, but also surpasses the RGBD-based methods on five benchmarks by a large margin.
arXiv Detail & Related papers (2020-05-30T13:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.