論文の概要: Automatic Feature Learning for Essence: a Case Study on Car Sequencing
- arxiv url: http://arxiv.org/abs/2409.15158v1
- Date: Mon, 23 Sep 2024 16:06:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:13:28.254476
- Title: Automatic Feature Learning for Essence: a Case Study on Car Sequencing
- Title(参考訳): エッセンスのための自動特徴学習 : カーシークエンシングを事例として
- Authors: Alessio Pellegrino, Özgür Akgün, Nguyen Dang, Zeynep Kiziltan, Ian Miguel,
- Abstract要約: 問題インスタンスに最適な組み合わせを自動的に選択するために、機械学習モデルを構築するタスクについて検討する。
学習プロセスの重要な部分は、選択モデルへの入力として機能するインスタンス機能を定義することである。
私たちの貢献は、言語モデルを用いた問題インスタンスの高レベル表現から直接、インスタンス機能の自動学習です。
- 参考スコア(独自算出の注目度): 1.006631010704608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constraint modelling languages such as Essence offer a means to describe combinatorial problems at a high-level, i.e., without committing to detailed modelling decisions for a particular solver or solving paradigm. Given a problem description written in Essence, there are multiple ways to translate it to a low-level constraint model. Choosing the right combination of a low-level constraint model and a target constraint solver can have significant impact on the effectiveness of the solving process. Furthermore, the choice of the best combination of constraint model and solver can be instance-dependent, i.e., there may not exist a single combination that works best for all instances of the same problem. In this paper, we consider the task of building machine learning models to automatically select the best combination for a problem instance. A critical part of the learning process is to define instance features, which serve as input to the selection model. Our contribution is automatic learning of instance features directly from the high-level representation of a problem instance using a language model. We evaluate the performance of our approach using the Essence modelling language with a case study involving the car sequencing problem.
- Abstract(参考訳): Essenceのような制約モデリング言語は、特定の解法や解法パラダイムの詳細なモデリング決定をコミットすることなく、高レベルで組合せ問題を記述する手段を提供する。
Essenceで書かれた問題の記述を考えると、それを低レベルの制約モデルに変換するには複数の方法がある。
低レベル制約モデルと目標制約解決器の適切な組み合わせを選択することは、解法の有効性に大きな影響を与える可能性がある。
さらに、制約モデルとソルバの最良の組み合わせの選択は、インスタンス依存であり、すなわち、同じ問題のすべてのインスタンスに最適に機能する単一の組み合わせは存在しないかもしれない。
本稿では,問題インスタンスの最適な組み合わせを自動的に選択するために,機械学習モデルを構築するタスクについて考察する。
学習プロセスの重要な部分は、選択モデルへの入力として機能するインスタンス機能を定義することである。
私たちの貢献は、言語モデルを用いた問題インスタンスの高レベル表現から直接、インスタンス機能の自動学習です。
カーシークエンシング問題を含むケーススタディを用いて,Essenceモデル言語を用いたアプローチの性能評価を行った。
関連論文リスト
- Athanor: Local Search over Abstract Constraint Specifications [2.3383199519492455]
本稿では,制約モデルとして受け入れる汎用ローカルサーチソルバに着目した。
ここで説明するAthanorソルバは、抽象制約仕様言語Essenceにおける問題の仕様から始まります。
論文 参考訳(メタデータ) (2024-10-08T11:41:38Z) - Green Runner: A tool for efficient deep learning component selection [0.76146285961466]
本稿では、自然言語で提供されるアプリケーションシナリオに基づいて、モデルを自動的に選択し、評価する新しいツールであるToolnameを提案する。
ツールネームは、問題に基づく制約とトレードオフをモデル選択プロセスに統合する、リソース効率のよい実験エンジンを備えている。
論文 参考訳(メタデータ) (2024-01-29T00:15:50Z) - Learning to Learn in Interactive Constraint Acquisition [7.741303298648302]
制約獲得(CA:Constraint Acquisition)では、モデルを自動的に学習することでユーザを支援することが目標である。
アクティブCAでは、クエリを対話的にユーザにポストすることでこれを行う。
本稿では、確率論的分類モデルを用いて対話型CAを誘導し、より有望なクエリを生成することを提案する。
論文 参考訳(メタデータ) (2023-12-17T19:12:33Z) - RetICL: Sequential Retrieval of In-Context Examples with Reinforcement Learning [53.52699766206808]
In-Context Learning (RetICL) のための検索式を提案する。
RetICLは数学用語の問題解決と科学的質問応答のタスクに基づいて評価し,一貫した性能や一致,学習可能なベースラインを示す。
論文 参考訳(メタデータ) (2023-05-23T20:15:56Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
本稿では,値関数近似を用いたオフラインRLにおけるモデル選択の問題について検討する。
対数係数まで最小値の速度-最適不等式を実現するオフラインRLの最初のモデル選択アルゴリズムを提案する。
そこで本研究では,優れたモデルクラスを確実に選択できることを示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2022-11-03T17:32:34Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
トレーニングデータのサブセットのみをラベル付けするバッチアクティブな学習問題を考察する。
制約付き最適化を用いて学習問題を定式化し、各制約はラベル付きサンプルにモデルの性能を拘束する。
数値実験により,提案手法は最先端の能動学習法と同等かそれ以上に機能することを示した。
論文 参考訳(メタデータ) (2022-02-08T19:18:49Z) - Model-agnostic multi-objective approach for the evolutionary discovery
of mathematical models [55.41644538483948]
現代のデータ科学では、どの部分がより良い結果を得るために置き換えられるかというモデルの性質を理解することがより興味深い。
合成データ駆動型モデル学習において,多目的進化最適化を用いてアルゴリズムの所望特性を求める。
論文 参考訳(メタデータ) (2021-07-07T11:17:09Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。