論文の概要: Goal-based Neural Physics Vehicle Trajectory Prediction Model
- arxiv url: http://arxiv.org/abs/2409.15182v1
- Date: Wed, 25 Sep 2024 04:31:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 14:13:28.224314
- Title: Goal-based Neural Physics Vehicle Trajectory Prediction Model
- Title(参考訳): ゴールに基づくニューラル物理車両軌道予測モデル
- Authors: Rui Gan, Haotian Shi, Pei Li, Keshu Wu, Bocheng An, Linheng Li, Junyi Ma, Chengyuan Ma, Bin Ran,
- Abstract要約: 本稿では、ゴールに基づくニューラル物理車両軌道予測モデル(GNP)を提案する。
GNPモデルは、車両の軌道予測を2段階のプロセスに単純化する。
GNPは4つのベースラインモデルと比較して最先端の長期予測精度を示す。
- 参考スコア(独自算出の注目度): 14.890973872051992
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle trajectory prediction plays a vital role in intelligent transportation systems and autonomous driving, as it significantly affects vehicle behavior planning and control, thereby influencing traffic safety and efficiency. Numerous studies have been conducted to predict short-term vehicle trajectories in the immediate future. However, long-term trajectory prediction remains a major challenge due to accumulated errors and uncertainties. Additionally, balancing accuracy with interpretability in the prediction is another challenging issue in predicting vehicle trajectory. To address these challenges, this paper proposes a Goal-based Neural Physics Vehicle Trajectory Prediction Model (GNP). The GNP model simplifies vehicle trajectory prediction into a two-stage process: determining the vehicle's goal and then choosing the appropriate trajectory to reach this goal. The GNP model contains two sub-modules to achieve this process. The first sub-module employs a multi-head attention mechanism to accurately predict goals. The second sub-module integrates a deep learning model with a physics-based social force model to progressively predict the complete trajectory using the generated goals. The GNP demonstrates state-of-the-art long-term prediction accuracy compared to four baseline models. We provide interpretable visualization results to highlight the multi-modality and inherent nature of our neural physics framework. Additionally, ablation studies are performed to validate the effectiveness of our key designs.
- Abstract(参考訳): 車両軌道予測は、車両の行動計画と制御に大きな影響を及ぼし、交通の安全と効率に影響を与えるため、インテリジェントな交通システムと自動運転において重要な役割を果たす。
短期的な車両軌道の予測には, 近い将来に多くの研究がなされている。
しかし, 長期軌道予測は, 累積誤差や不確実性のため, 依然として大きな課題である。
さらに、予測における解釈可能性による精度のバランスは、車両軌道の予測における別の難しい問題である。
これらの課題に対処するために、ゴールに基づくニューラル物理車両軌道予測モデル(GNP)を提案する。
GNPモデルは、車両の軌道予測を2段階のプロセスに単純化する。
GNPモデルは、このプロセスを達成するために2つの部分加群を含む。
最初のサブモジュールは、目標を正確に予測するためにマルチヘッドアテンションメカニズムを使用する。
第2のサブモジュールは、深層学習モデルと物理に基づく社会力モデルを統合して、生成された目標を用いて完全な軌道を段階的に予測する。
GNPは、4つのベースラインモデルと比較して最先端の長期予測精度を示す。
我々は、ニューラルネットワークフレームワークの多モード性と固有の性質を強調するために、解釈可能な可視化結果を提供する。
また,鍵設計の有効性を検証するためにアブレーション研究を行った。
関連論文リスト
- Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - Towards Safe and Reliable Autonomous Driving: Dynamic Occupancy Set Prediction [12.336412741837407]
本研究は,高度軌跡予測ネットワークとDOS予測モジュールを効果的に組み合わせた,DOS予測のための新しい手法を提案する。
本研究の革新的な貢献は、複雑なシナリオをナビゲートするための新しいDOS予測モデルの開発である。
論文 参考訳(メタデータ) (2024-02-29T17:36:39Z) - AdvDO: Realistic Adversarial Attacks for Trajectory Prediction [87.96767885419423]
軌道予測は、自動運転車が正しく安全な運転行動を計画するために不可欠である。
我々は,現実的な対向軌道を生成するために,最適化に基づく対向攻撃フレームワークを考案する。
私たちの攻撃は、AVが道路を走り去るか、シミュレーション中に他の車両に衝突する可能性がある。
論文 参考訳(メタデータ) (2022-09-19T03:34:59Z) - Class-Aware Attention for Multimodal Trajectory Prediction [0.7130302992490973]
自律運転における多モーダル軌道予測のための新しい枠組みを提案する。
我々のモデルはリアルタイムに動作することができ、300FPSを超える高い推論速度を達成することができる。
論文 参考訳(メタデータ) (2022-08-31T18:43:23Z) - Control-Aware Prediction Objectives for Autonomous Driving [78.19515972466063]
本研究では,制御に対する予測の下流効果を評価するための制御認識予測目標(CAPOs)を提案する。
本稿では,エージェント間の注意モデルを用いた重み付けと,予測軌跡を接地真実軌跡に交換する際の制御変動に基づく重み付けの2つの方法を提案する。
論文 参考訳(メタデータ) (2022-04-28T07:37:21Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
軌道生成と予測は、知的車両のプランナー評価と意思決定において重要な役割を果たす。
本稿では,ドライバの動作を明示的にモデル化する行動認識型トラジェクトリ・オートエンコーダ(TAE)を提案する。
我々のモデルは、統一アーキテクチャにおける軌道生成と予測に対処し、両方のタスクに利益をもたらす。
論文 参考訳(メタデータ) (2022-03-02T17:37:44Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Learning to Predict Vehicle Trajectories with Model-based Planning [43.27767693429292]
PRIME(Prediction with Model-based Planning)という新しいフレームワークを紹介します。
ニューラルネットワークを使ってシーンコンテキストをモデル化する最近の予測作業とは異なり、PRIMEは正確で実現可能な将来の軌道予測を生成するように設計されている。
我々のPRIMEは、不完全追跡下での予測精度、実現可能性、堅牢性において最先端の手法より優れています。
論文 参考訳(メタデータ) (2021-03-06T04:49:24Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
異種エージェントを含む多エージェント軌道予測のための汎用生成ニューラルシステムを提案する。
提案システムは, 軌道予測のための3つのベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-02-18T02:25:35Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。