論文の概要: Enhancing Pedestrian Trajectory Prediction with Crowd Trip Information
- arxiv url: http://arxiv.org/abs/2409.15224v1
- Date: Mon, 23 Sep 2024 17:11:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:52:58.792266
- Title: Enhancing Pedestrian Trajectory Prediction with Crowd Trip Information
- Title(参考訳): 群集トリップ情報による歩行者軌道予測の強化
- Authors: Rei Tamaru, Pei Li, Bin Ran,
- Abstract要約: 正確な歩行者軌道予測には、個々の行動、社会的相互作用、道路環境の深い理解が必要である。
本稿では,歩行者軌道モデルに旅行情報を新たなモダリティとして取り入れた新しいアプローチを提案する。
道路網内の群集行動を調べることで,正確な軌道予測による歩行者の安全向上が期待できる。
- 参考スコア(独自算出の注目度): 17.09138102827048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian trajectory prediction is essential for various applications in active traffic management, urban planning, traffic control, crowd management, and autonomous driving, aiming to enhance traffic safety and efficiency. Accurately predicting pedestrian trajectories requires a deep understanding of individual behaviors, social interactions, and road environments. Existing studies have developed various models to capture the influence of social interactions and road conditions on pedestrian trajectories. However, these approaches are limited by the lack of a comprehensive view of social interactions and road environments. To address these limitations and enhance the accuracy of pedestrian trajectory prediction, we propose a novel approach incorporating trip information as a new modality into pedestrian trajectory models. We propose RNTransformer, a generic model that utilizes crowd trip information to capture global information on social interactions. We incorporated RNTransformer with various socially aware local pedestrian trajectory prediction models to demonstrate its performance. Specifically, by leveraging a pre-trained RNTransformer when training different pedestrian trajectory prediction models, we observed improvements in performance metrics: a 1.3/2.2% enhancement in ADE/FDE on Social-LSTM, a 6.5/28.4% improvement on Social-STGCNN, and an 8.6/4.3% improvement on S-Implicit. Evaluation results demonstrate that RNTransformer significantly enhances the accuracy of various pedestrian trajectory prediction models across multiple datasets. Further investigation reveals that the RNTransformer effectively guides local models to more accurate directions due to the consideration of global information. By exploring crowd behavior within the road network, our approach shows great promise in improving pedestrian safety through accurate trajectory predictions.
- Abstract(参考訳): 歩行者の軌道予測は、交通の安全と効率を高めることを目的とした、活発な交通管理、都市計画、交通制御、群衆管理、自動運転における様々な応用に不可欠である。
正確な歩行者軌道予測には、個々の行動、社会的相互作用、道路環境の深い理解が必要である。
既存の研究では、歩行者軌道に対する社会的相互作用や道路条件の影響を捉えた様々なモデルが開発されている。
しかし、これらのアプローチは、社会的相互作用と道路環境の包括的視点の欠如によって制限されている。
これらの制約に対処し、歩行者軌跡予測の精度を高めるために、歩行者軌跡モデルに旅行情報を新たなモダリティとして取り入れた新しいアプローチを提案する。
本稿では,クラウドトリップ情報を利用したソーシャルインタラクションのグローバル情報を取得する汎用モデルであるRNTransformerを提案する。
RNTransformerには,様々な地域歩行者軌道予測モデルが組み込まれ,その性能を実証した。
具体的には、異なる歩行者軌跡予測モデルをトレーニングする際に、事前訓練されたRNTransformerを活用することで、社会的LSTMにおけるADE/FDEの1.3/2.2%向上、Social-STGCNNの6.5/28.4%改善、S-Implicitの8.6/4.3%改善といったパフォーマンス指標の改善を観察した。
評価の結果、RNTransformerは、複数のデータセットにわたる様々な歩行者軌道予測モデルの精度を大幅に向上させることが示された。
RNTransformerは,グローバル情報を考慮したローカルモデルをより正確な方向に効果的に誘導する。
道路網内の群集行動を調べることで,正確な軌道予測による歩行者の安全向上が期待できる。
関連論文リスト
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Knowledge-aware Graph Transformer for Pedestrian Trajectory Prediction [15.454206825258169]
歩行者運動軌跡の予測は、自動運転車の経路計画と移動制御に不可欠である。
近年の深層学習に基づく予測手法は、主に軌跡履歴や歩行者間の相互作用などの情報を利用する。
本稿では,予測性能を向上させるためのグラフトランス構造を提案する。
論文 参考訳(メタデータ) (2024-01-10T01:50:29Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
交通現場では、来るべき人々と出会うと、歩行者は突然回転したり、すぐに止まることがある。
このような予測不可能な軌道を予測するために、歩行者間の相互作用についての洞察を得ることができる。
本稿では,歩行者軌跡の相関関係を注意機構を用いて学習する空間的相互作用変換器(SIT)を提案する。
論文 参考訳(メタデータ) (2021-12-13T13:08:04Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Predicting Vehicles Trajectories in Urban Scenarios with Transformer
Networks and Augmented Information [0.0]
本稿では,トランスフォーマーネットワークに基づく歩行者軌道予測のための単純な構造を利用する。
我々は,最大5秒の地平線における都市シナリオにおける車両軌道予測の問題にそれらの利用を適応させる。
我々のモデルは最先端の成果を達成し、異なるタイプの都市環境に柔軟で適応可能であることを証明している。
論文 参考訳(メタデータ) (2021-06-01T15:18:55Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Trajectory Prediction in Autonomous Driving with a Lane Heading
Auxiliary Loss [1.1470070927586014]
本稿では,全ての予測モードにおいて予測駆動ルールを強制することにより,軌道予測モデルを強化する損失関数を提案する。
軌道予測への我々の貢献は2倍であり、オフロードレート計量の故障事例に対処する新しい指標を提案する。
次に、この補助損失を用いて、MTP(Multiple trajectory Prediction)モデルとMultiPathモデルを拡張する。
論文 参考訳(メタデータ) (2020-11-12T22:51:25Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。