論文の概要: Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach
- arxiv url: http://arxiv.org/abs/2409.15226v1
- Date: Mon, 23 Sep 2024 17:15:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:52:58.789405
- Title: Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach
- Title(参考訳): SDN上のインテリジェントルーティングアルゴリズム:再利用可能な強化学習アプローチ
- Authors: Wang Wumian, Sajal Saha, Anwar Haque, Greg Sidebottom,
- Abstract要約: 本稿では,再利用可能なRLSRルーティングアルゴリズム RLSR-Routing をSDN上で開発する。
我々のアルゴリズムは従来の手法よりもロードバランシングの点で優れた性能を示している。
また、複数のトラフィック要求のパスを見つける際には、再利用不可能なRLアプローチよりも早く収束する。
- 参考スコア(独自算出の注目度): 1.799933345199395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic routing is vital for the proper functioning of the Internet. As users and network traffic increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown better performance than traditional approaches. We developed a QoS-aware, reusable RL routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm ensures loop-free path exploration. While finding the path for one traffic demand (a source destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS status, which can be used to speed up algorithm convergence when finding the path for other traffic demands. By adapting Segment Routing, our algorithm can achieve flow-based, source packet routing, and reduce communications required between SDN controller and network plane. Our algorithm shows better performance in terms of load balancing than the traditional approaches. It also has faster convergence than the non-reusable RL approach when finding paths for multiple traffic demands.
- Abstract(参考訳): インターネットの適切な機能には、トラフィックルーティングが不可欠である。
ユーザとネットワークトラフィックが増加するにつれて、研究者は様々なQoS要求を満たす適応的でインテリジェントなルーティングアルゴリズムを開発しようとする。
強化学習(RL)ベースのルーティングアルゴリズムは、従来のアプローチよりも優れたパフォーマンスを示している。
我々は、SDN上のQoS対応再利用可能なRLルーティングアルゴリズム、RLSR-Routingを開発した。
学習過程において,本アルゴリズムはループのない経路探索を保証する。
RLSR-Routingは、あるトラフィック要求の経路(ある量のトラフィックと一致するソース先)を見つけながら、他のトラフィック要求の経路を見つける際にアルゴリズム収束を高速化するために使用できる、全体のネットワークQoSステータスを学習する。
Segment Routingを適用することで、フローベースのソースパケットルーティングを実現し、SDNコントローラとネットワークプレーン間の通信を削減できる。
我々のアルゴリズムは従来の手法よりもロードバランシングの点で優れた性能を示している。
また、複数のトラフィック要求のパスを見つける際には、再利用不可能なRLアプローチよりも早く収束する。
関連論文リスト
- A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
次世代ネットワークは、トラフィックダイナミクスに基づいたネットワーク構成を自動化し、適応的に調整する必要がある。
交通政策を決定する伝統的な手法は、通常は手作りのプログラミング最適化とアルゴリズムに基づいている。
我々は適応的なトラフィックルーティングのための深層強化学習(DRL)アプローチを開発する。
論文 参考訳(メタデータ) (2024-02-07T01:48:29Z) - Learning State-Augmented Policies for Information Routing in
Communication Networks [92.59624401684083]
我々は,グラフニューラルネットワーク(GNN)アーキテクチャを用いて,ソースノードの集約情報を最大化する,新たなステート拡張(SA)戦略を開発した。
教師なし学習手法を利用して、GNNアーキテクチャの出力を最適情報ルーティング戦略に変換する。
実験では,実時間ネットワークトポロジの評価を行い,アルゴリズムの有効性を検証した。
論文 参考訳(メタデータ) (2023-09-30T04:34:25Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Robust Path Selection in Software-defined WANs using Deep Reinforcement
Learning [18.586260468459386]
本稿では、経路計算と経路更新のオーバーヘッドを考慮した、ネットワーク内の経路選択を行うデータ駆動アルゴリズムを提案する。
提案手法は,ECMPなどの従来のTE方式に比べてリンク利用率を40%削減できる。
論文 参考訳(メタデータ) (2022-12-21T16:08:47Z) - A Reinforcement Learning Approach to Optimize Available Network
Bandwidth Utilization [3.254879465902239]
深部強化学習(RL)を用いた並列TCPストリームの最適数を求めるための新しい手法を提案する。
我々のRLアルゴリズムは、最大15%高いスループットを達成しながら、ほぼ最適解を40%高速に見つけることができる。
論文 参考訳(メタデータ) (2022-11-22T02:00:05Z) - Fidelity-Guarantee Entanglement Routing in Quantum Networks [64.49733801962198]
絡み合いルーティングは、2つの任意のノード間のリモート絡み合い接続を確立する。
量子ネットワークにおける複数のソース・デスティネーション(SD)ペアの忠実性を保証するために、精製可能な絡み合わせルーティング設計を提案する。
論文 参考訳(メタデータ) (2021-11-15T14:07:22Z) - Deep Reinforcement Learning Aided Packet-Routing For Aeronautical Ad-Hoc
Networks Formed by Passenger Planes [99.54065757867554]
エンド・ツー・エンド(E2E)遅延の最小化を目的としたAANETにおけるルーティングのための深層強化学習を起動する。
最深Qネットワーク(DQN)は、転送ノードで観測される最適ルーティング決定と局所的な地理的情報との関係をキャプチャする。
フィードバック機構を組み込んだディープバリューネットワーク(DVN)を用いて,システムのダイナミクスに関する知識をさらに活用する。
論文 参考訳(メタデータ) (2021-10-28T14:18:56Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Packet Routing with Graph Attention Multi-agent Reinforcement Learning [4.78921052969006]
我々は強化学習(RL)を利用したモデルフリーでデータ駆動型ルーティング戦略を開発する。
ネットワークトポロジのグラフ特性を考慮すると、グラフニューラルネットワーク(GNN)と組み合わせたマルチエージェントRLフレームワークを設計する。
論文 参考訳(メタデータ) (2021-07-28T06:20:34Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Towards Cognitive Routing based on Deep Reinforcement Learning [17.637357380527583]
本稿では,Deep Reinforcement Learning(DRL)に基づく認知的ルーティングの定義と実装アプローチを提案する。
DRLに基づく認知ルーティングの研究を容易にするために,DRLに基づくルーティングアルゴリズムの開発とシミュレーションのためのシミュレータRL4Netを導入する。
実例ネットワークトポロジのシミュレーション結果から,DDPGに基づくルーティングアルゴリズムはOSPFやランダムウェイトアルゴリズムよりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2020-03-19T03:32:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。