論文の概要: Equivariance-based self-supervised learning for audio signal recovery from clipped measurements
- arxiv url: http://arxiv.org/abs/2409.15283v1
- Date: Tue, 3 Sep 2024 06:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:16:59.214432
- Title: Equivariance-based self-supervised learning for audio signal recovery from clipped measurements
- Title(参考訳): 等価性に基づく自己教師型学習によるクリップ計測による音声信号の回復
- Authors: Victor Sechaud, Laurent Jacques, Patrice Abry, Julián Tachella,
- Abstract要約: クリップ計測から音声信号を復元する非線形逆問題に対する自己教師型学習について検討した。
提案手法は, 自己教師付き自己教師型復号法の性能を, 完全教師付き学習と良好に比較できることを示す。
- 参考スコア(独自算出の注目度): 13.829249782527363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In numerous inverse problems, state-of-the-art solving strategies involve training neural networks from ground truth and associated measurement datasets that, however, may be expensive or impossible to collect. Recently, self-supervised learning techniques have emerged, with the major advantage of no longer requiring ground truth data. Most theoretical and experimental results on self-supervised learning focus on linear inverse problems. The present work aims to study self-supervised learning for the non-linear inverse problem of recovering audio signals from clipped measurements. An equivariance-based selfsupervised loss is proposed and studied. Performance is assessed on simulated clipped measurements with controlled and varied levels of clipping, and further reported on standard real music signals. We show that the performance of the proposed equivariance-based self-supervised declipping strategy compares favorably to fully supervised learning while only requiring clipped measurements alone for training.
- Abstract(参考訳): 多くの逆問題において、最先端の問題解決戦略は、ニューラルネットワークを地上の真実と関連する測定データセットから訓練することを含む。
近年, 自己指導型学習技術が登場し, 基礎的真理データを必要としないという大きな利点がある。
自己教師付き学習における最も理論的および実験的結果は線形逆問題に焦点をあてる。
本研究の目的は,クリップ計測から音声信号を復元する非線形逆問題に対する自己教師型学習の研究である。
等分散に基づく自己監督的損失を提案し,検討した。
クリッピングレベルを制御し,様々なレベルのクリッピングを施したシミュレートされたクリッピング測定により,その性能を評価し,さらに標準的な音楽信号について報告する。
提案手法の有効性は, クリッピングした測定のみを訓練に必要としながら, 完全教師付き学習と良好に比較できることを示す。
関連論文リスト
- Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
そこで本研究では,データ依存型コンダクタンス(Data-dependent contraction)と呼ばれる手法を提案する。
この技術に加えて、不均衡学習のための微粒な一般化境界が確立され、再重み付けとロジット調整の謎を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-10-07T09:15:08Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - Multimodal Imbalance-Aware Gradient Modulation for Weakly-supervised
Audio-Visual Video Parsing [107.031903351176]
弱分離型音声視覚ビデオ解析(WS-AVVP)は、音声、視覚および音声視覚イベントインスタンスの時間的範囲をローカライズすることを目的としている。
WS-AVVPは、トレーニング用にビデオレベルのカテゴリラベルのみを使用して、対応するイベントカテゴリを特定することを目的としている。
論文 参考訳(メタデータ) (2023-07-05T05:55:10Z) - Self-supervised Auxiliary Loss for Metric Learning in Music
Similarity-based Retrieval and Auto-tagging [0.0]
類似性に基づく検索課題に対処するために,自己教師付き学習アプローチに基づくモデルを提案する。
また, 微調整期間中の増員を控えることで, 良好な結果が得られた。
論文 参考訳(メタデータ) (2023-04-15T02:00:28Z) - Assessor-Guided Learning for Continual Environments [17.181933166255448]
本稿では,継続的学習のための評価者指導型学習戦略を提案する。
評価者は、学習過程の方向とペースを制御することにより、基礎学習者の学習過程を案内する。
評価器はメタ学習方式でメタオブジェクトを用いて訓練され、ベース学習者の学習プロセスが促進される。
論文 参考訳(メタデータ) (2023-03-21T06:45:14Z) - Causal Deep Reinforcement Learning Using Observational Data [11.790171301328158]
深部強化学習(DRL)における2つの解答法を提案する。
提案手法はまず, 因果推論法に基づいて異なる試料の重要度を算出し, 損失関数に対する異なる試料の影響を調整する。
本手法の有効性を実証し,実験的に検証する。
論文 参考訳(メタデータ) (2022-11-28T14:34:39Z) - Deep Active Learning with Noise Stability [24.54974925491753]
ラベルのないデータの不確実性推定は、アクティブな学習に不可欠である。
本稿では,雑音の安定性を利用して不確実性を推定する新しいアルゴリズムを提案する。
本手法はコンピュータビジョン,自然言語処理,構造データ解析など,様々なタスクに適用可能である。
論文 参考訳(メタデータ) (2022-05-26T13:21:01Z) - Influence-Balanced Loss for Imbalanced Visual Classification [9.958715010698157]
我々は、バランスの取れたトレーニングフェーズで使われる新たな損失を導き、過度に適合した決定境界の原因となるサンプルの影響を軽減する。
複数のベンチマークデータセットの実験において,提案手法の有効性を実証し,提案手法の損失が最先端のコスト感受性損失法より優れていることを示す。
論文 参考訳(メタデータ) (2021-10-06T01:12:40Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。