論文の概要: Broadening Access to Simulations for End-Users via Large Language Models: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2409.15290v1
- Date: Tue, 3 Sep 2024 23:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 20:16:59.193761
- Title: Broadening Access to Simulations for End-Users via Large Language Models: Challenges and Opportunities
- Title(参考訳): 大規模言語モデルによるエンドユーザーシミュレーションへのアクセス拡大:課題と機会
- Authors: Philippe J. Giabbanelli, Jose J. Padilla, Ameeta Agrawal,
- Abstract要約: 大規模言語モデル(LLM)は、ユーザがシステムと対話するのを支援するインテリジェントな仮想アシスタントを作成するために、ユビキタスになりつつある。
本研究では,シミュレーションにLLMを用いることで,シミュレーションへのアクセスを拡大する可能性について検討する。
- 参考スコア(独自算出の注目度): 1.5703073293718952
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) are becoming ubiquitous to create intelligent virtual assistants that assist users in interacting with a system, as exemplified in marketing. Although LLMs have been discussed in Modeling & Simulation (M&S), the community has focused on generating code or explaining results. We examine the possibility of using LLMs to broaden access to simulations, by enabling non-simulation end-users to ask what-if questions in everyday language. Specifically, we discuss the opportunities and challenges in designing such an end-to-end system, divided into three broad phases. First, assuming the general case in which several simulation models are available, textual queries are mapped to the most relevant model. Second, if a mapping cannot be found, the query can be automatically reformulated and clarifying questions can be generated. Finally, simulation results are produced and contextualized for decision-making. Our vision for such system articulates long-term research opportunities spanning M&S, LLMs, information retrieval, and ethics.
- Abstract(参考訳): 大きな言語モデル(LLM)は、マーケティングで例示されるように、ユーザがシステムと対話するのを支援するインテリジェントな仮想アシスタントを作成するために、ユビキタスになりつつある。
LLMはモデリングとシミュレーション(M&S)で議論されているが、コミュニティはコードの生成や結果の説明に重点を置いてきた。
本研究では,シミュレーションにLLMを用いることで,シミュレーションへのアクセスを拡大する可能性について検討する。
具体的には,このようなエンド・ツー・エンドのシステムを3段階に分けて設計する機会と課題について論じる。
まず、いくつかのシミュレーションモデルが利用可能である一般的な場合を想定し、テキストクエリを最も関連するモデルにマッピングする。
第二に、マッピングが見つからない場合、クエリを自動的に再構成し、質問を明確にすることができる。
最後に、シミュレーション結果を生成・コンテキスト化して意思決定を行う。
このようなシステムに対する私たちのビジョンは、M&S、LLM、情報検索、倫理にまたがる長期的な研究機会を明確に示します。
関連論文リスト
- IDEAL: Leveraging Infinite and Dynamic Characterizations of Large Language Models for Query-focused Summarization [59.06663981902496]
クエリ中心の要約(QFS)は、特定の関心事に答え、より優れたユーザ制御とパーソナライゼーションを可能にする要約を作成することを目的としている。
本稿では,LLMを用いたQFSモデル,Longthy Document Summarization,およびクエリ-LLMアライメントの2つの重要な特徴について検討する。
これらのイノベーションは、QFS技術分野における幅広い応用とアクセシビリティの道を開いた。
論文 参考訳(メタデータ) (2024-07-15T07:14:56Z) - Optimal Decision Making Through Scenario Simulations Using Large Language Models [0.0]
大規模言語モデル(LLM)は、複雑な問題へのアプローチと解決の方法を変えました。
本稿では,この能力ギャップを橋渡しする革新的な手法を提案する。
LLMがユーザから複数のオプションとそれぞれのパラメータをリクエストできるようにすることで、動的フレームワークを導入しています。
この関数は提供された選択肢を分析し、潜在的な結果をシミュレートし、最も有利な解を決定するように設計されている。
論文 参考訳(メタデータ) (2024-07-09T01:23:09Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Multi-LLM QA with Embodied Exploration [55.581423861790945]
未知環境における質問応答におけるマルチエンボディードLEMエクスプローラ(MELE)の利用について検討する。
複数のLSMベースのエージェントが独立して家庭用環境に関する質問を探索し、回答する。
各問合せに対して1つの最終回答を生成するために,異なるアグリゲーション手法を解析する。
論文 参考訳(メタデータ) (2024-06-16T12:46:40Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - USimAgent: Large Language Models for Simulating Search Users [33.17004578463697]
本稿では,大規模言語モデルに基づくユーザ検索行動シミュレータUSimAgentを紹介する。
シミュレータは、検索中のユーザのクエリ、クリック、動作の停止をシミュレートすることができる。
実ユーザ行動データセットに関する実証調査では、シミュレータがクエリ生成において既存のメソッドよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-03-14T07:40:54Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - LLMs for Robotic Object Disambiguation [21.101902684740796]
本研究は,LLMが複雑な意思決定課題の解決に適していることを明らかにする。
我々の研究の重要な焦点は、LLMのオブジェクトの曖昧化能力である。
我々は,LLMのあいまいなクエリを提示する能力を改善するために,数発のプロンプトエンジニアリングシステムを開発した。
論文 参考訳(メタデータ) (2024-01-07T04:46:23Z) - GPT-Based Models Meet Simulation: How to Efficiently Use Large-Scale
Pre-Trained Language Models Across Simulation Tasks [0.0]
本稿では,科学シミュレーションにおける大規模事前学習言語モデルの利用に関する最初の研究である。
最初の課題は参加者の関与を促進する概念モデルの構造を説明することである。
第2のタスクはシミュレーション出力の要約に重点を置いており、モデルユーザーが望ましいシナリオを識別できるようにしている。
第3の課題は、シミュレーションの可視化の洞察をテキストで伝えることによって、シミュレーションプラットフォームへのアクセシビリティの拡大を目指している。
論文 参考訳(メタデータ) (2023-06-21T15:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。