Exploring the Feasibility of Multimodal Chatbot AI as Copilot in Pathology Diagnostics: Generalist Model's Pitfall
- URL: http://arxiv.org/abs/2409.15291v1
- Date: Wed, 4 Sep 2024 01:30:05 GMT
- Title: Exploring the Feasibility of Multimodal Chatbot AI as Copilot in Pathology Diagnostics: Generalist Model's Pitfall
- Authors: Mianxin Liu, Jianfeng Wu, Fang Yan, Hongjun Li, Wei Wang, Shaoting Zhang, Zhe Wang,
- Abstract summary: ChatGPT and other multimodal models have shown promise in transforming medical image analysis through capabilities such as medical vision-language question answering.
This study benchmarks the performance of GPT on pathology images, assessing their diagnostic accuracy and efficiency in real-word clinical records.
We observe significant deficits of GPT in bone diseases and a fair-level performance in diseases from other three systems.
- Score: 17.9731336178034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pathology images are crucial for diagnosing and managing various diseases by visualizing cellular and tissue-level abnormalities. Recent advancements in artificial intelligence (AI), particularly multimodal models like ChatGPT, have shown promise in transforming medical image analysis through capabilities such as medical vision-language question answering. However, there remains a significant gap in integrating pathology image data with these AI models for clinical applications. This study benchmarks the performance of GPT on pathology images, assessing their diagnostic accuracy and efficiency in real-word clinical records. We observe significant deficits of GPT in bone diseases and a fair-level performance in diseases from other three systems. Despite offering satisfactory abnormality annotations, GPT exhibits consistent disadvantage in terminology accuracy and multimodal integration. Specifically, we demonstrate GPT's failures in interpreting immunohistochemistry results and diagnosing metastatic cancers. This study highlight the weakness of current generalist GPT model and contribute to the integration of pathology and advanced AI.
Related papers
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - MiniGPT-Med: Large Language Model as a General Interface for Radiology Diagnosis [28.421857904824627]
MiniGPT-Med is a vision-language model derived from large-scale language models and tailored for medical applications.
It is capable of performing tasks such as medical report generation, visual question answering (VQA), and disease identification within medical imagery.
It achieves state-of-the-art performance on medical report generation, higher than the previous best model by 19% accuracy.
arXiv Detail & Related papers (2024-07-04T18:21:10Z) - Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation [0.0]
Foundation models (FM) are machine or deep learning models trained on diverse data and applicable to broad use cases.
FM offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis.
This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice.
arXiv Detail & Related papers (2024-06-26T10:51:44Z) - Holistic Evaluation of GPT-4V for Biomedical Imaging [113.46226609088194]
GPT-4V represents a breakthrough in artificial general intelligence for computer vision.
We assess GPT-4V's performance across 16 medical imaging categories, including radiology, oncology, ophthalmology, pathology, and more.
Results show GPT-4V's proficiency in modality and anatomy recognition but difficulty with disease diagnosis and localization.
arXiv Detail & Related papers (2023-11-10T18:40:44Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.