Enhancing Thyroid Cytology Diagnosis with RAG-Optimized LLMs and Pa-thology Foundation Models
- URL: http://arxiv.org/abs/2505.08590v1
- Date: Tue, 13 May 2025 14:01:35 GMT
- Title: Enhancing Thyroid Cytology Diagnosis with RAG-Optimized LLMs and Pa-thology Foundation Models
- Authors: Hussien Al-Asi, Jordan P Reynolds, Shweta Agarwal, Bryan J Dangott, Aziza Nassar, Zeynettin Akkus,
- Abstract summary: This study explores the application of AUC-enhanced large language models (LLMs) with pathology foundation models for thyroid diagnosis.<n>By leveraging a curated knowledge base, RAG facilitates dy-namic retrieval of relevant case studies, diagnostic criteria, and expert interpreta-tion.<n>The fusion of these AI-driven approaches en-hances diagnostic consistency, reduces variability, and supports pathologists in dis-tinguishing benign from malignant thyroid lesions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Advancements in artificial intelligence (AI) are transforming pathology by integrat-ing large language models (LLMs) with retrieval-augmented generation (RAG) and domain-specific foundation models. This study explores the application of RAG-enhanced LLMs coupled with pathology foundation models for thyroid cytology diagnosis, addressing challenges in cytological interpretation, standardization, and diagnostic accuracy. By leveraging a curated knowledge base, RAG facilitates dy-namic retrieval of relevant case studies, diagnostic criteria, and expert interpreta-tion, improving the contextual understanding of LLMs. Meanwhile, pathology foun-dation models, trained on high-resolution pathology images, refine feature extrac-tion and classification capabilities. The fusion of these AI-driven approaches en-hances diagnostic consistency, reduces variability, and supports pathologists in dis-tinguishing benign from malignant thyroid lesions. Our results demonstrate that integrating RAG with pathology-specific LLMs significantly improves diagnostic efficiency and interpretability, paving the way for AI-assisted thyroid cytopathology, with foundation model UNI achieving AUC 0.73-0.93 for correct prediction of surgi-cal pathology diagnosis from thyroid cytology samples.
Related papers
- RadFabric: Agentic AI System with Reasoning Capability for Radiology [61.25593938175618]
RadFabric is a multi agent, multimodal reasoning framework that unifies visual and textual analysis for comprehensive CXR interpretation.<n>System employs specialized CXR agents for pathology detection, an Anatomical Interpretation Agent to map visual findings to precise anatomical structures, and a Reasoning Agent powered by large multimodal reasoning models to synthesize visual, anatomical, and clinical data into transparent and evidence based diagnoses.
arXiv Detail & Related papers (2025-06-17T03:10:33Z) - MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention [52.106879463828044]
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease.<n>We present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention.<n>Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance.
arXiv Detail & Related papers (2025-03-01T07:02:30Z) - MedRAG: Enhancing Retrieval-augmented Generation with Knowledge Graph-Elicited Reasoning for Healthcare Copilot [47.77948063906033]
Retrieval-augmented generation (RAG) is a well-suited technique for retrieving privacy-sensitive Electronic Health Records.<n>This paper proposes MedRAG, a RAG model enhanced by knowledge graph (KG)-elicited reasoning for the medical domain.<n>Tests show MedRAG provides more specific diagnostic insights and outperforms state-of-the-art models in reducing misdiagnosis rates.
arXiv Detail & Related papers (2025-02-06T12:27:35Z) - Efficient and Comprehensive Feature Extraction in Large Vision-Language Model for Pathology Analysis [37.11302829771659]
Large vision-language models (LVLMs) are limited by input resolution constraints, hindering their efficiency and accuracy in pathology image analysis.<n>We propose two innovative strategies: the mixed task-guided feature enhancement, and the prompt-guided detail feature completion.<n>We trained the pathology-specialized LVLM, OmniPath, which significantly outperforms existing methods in diagnostic accuracy and efficiency.
arXiv Detail & Related papers (2024-12-12T18:07:23Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.<n>Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.<n>We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
Topological data analysis offers a unique approach by extracting essential information through the evaluation of topological patterns across different color channels.
We show that the inclusion of topological features significantly improves the differentiation of tumor types in ovarian and breast cancers.
arXiv Detail & Related papers (2024-10-13T12:24:13Z) - Exploring the Feasibility of Multimodal Chatbot AI as Copilot in Pathology Diagnostics: Generalist Model's Pitfall [17.9731336178034]
ChatGPT and other multimodal models have shown promise in transforming medical image analysis through capabilities such as medical vision-language question answering.
This study benchmarks the performance of GPT on pathology images, assessing their diagnostic accuracy and efficiency in real-word clinical records.
We observe significant deficits of GPT in bone diseases and a fair-level performance in diseases from other three systems.
arXiv Detail & Related papers (2024-09-04T01:30:05Z) - Explainable Biomedical Hypothesis Generation via Retrieval Augmented Generation enabled Large Language Models [46.05020842978823]
Large Language Models (LLMs) have emerged as powerful tools to navigate this complex data landscape.
RAGGED is a comprehensive workflow designed to support investigators with knowledge integration and hypothesis generation.
arXiv Detail & Related papers (2024-07-17T07:44:18Z) - Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation [0.0]
Foundation models (FM) are machine or deep learning models trained on diverse data and applicable to broad use cases.
FM offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis.
This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice.
arXiv Detail & Related papers (2024-06-26T10:51:44Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Detecting Histologic & Clinical Glioblastoma Patterns of Prognostic
Relevance [6.281092892485014]
Glioblastoma is the most common and aggressive malignant adult tumor of the central nervous system.
Since adopting the current standard-of-care treatment 18 years ago, no substantial prognostic improvement has been noticed.
Here, we focus on identifying prognostically relevant characteristics from H&E stained WSI & clinical data relating to OS.
arXiv Detail & Related papers (2023-02-01T18:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.