Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation
- URL: http://arxiv.org/abs/2406.18249v2
- Date: Fri, 30 Aug 2024 14:36:08 GMT
- Title: Foundational Models for Pathology and Endoscopy Images: Application for Gastric Inflammation
- Authors: Hamideh Kerdegari, Kyle Higgins, Dennis Veselkov, Ivan Laponogov, Inese Polaka, Miguel Coimbra, Junior Andrea Pescino, Marcis Leja, Mario Dinis-Ribeiro, Tania Fleitas Kanonnikoff, Kirill Veselkov,
- Abstract summary: Foundation models (FM) are machine or deep learning models trained on diverse data and applicable to broad use cases.
FM offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis.
This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of artificial intelligence (AI) in medical diagnostics represents a significant advancement in managing upper gastrointestinal (GI) cancer, a major cause of global cancer mortality. Specifically for gastric cancer (GC), chronic inflammation causes changes in the mucosa such as atrophy, intestinal metaplasia (IM), dysplasia and ultimately cancer. Early detection through endoscopic regular surveillance is essential for better outcomes. Foundation models (FM), which are machine or deep learning models trained on diverse data and applicable to broad use cases, offer a promising solution to enhance the accuracy of endoscopy and its subsequent pathology image analysis. This review explores the recent advancements, applications, and challenges associated with FM in endoscopy and pathology imaging. We started by elucidating the core principles and architectures underlying these models, including their training methodologies and the pivotal role of large-scale data in developing their predictive capabilities. Moreover, this work discusses emerging trends and future research directions, emphasizing the integration of multimodal data, the development of more robust and equitable models, and the potential for real-time diagnostic support. This review aims to provide a roadmap for researchers and practitioners in navigating the complexities of incorporating FM into clinical practice for prevention/management of GC cases, thereby improving patient outcomes.
Related papers
- Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.
predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.
We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Explainable machine learning for neoplasms diagnosis via electrocardiograms: an externally validated study [0.9503773054285559]
Neoplasms remains a leading cause of mortality worldwide.
Current diagnostic methods are often invasive, costly, and inaccessible to many populations.
This study explores the application of machine learning models to analyze ECG features for the diagnosis of neoplasms.
arXiv Detail & Related papers (2024-12-10T18:34:08Z) - MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models [49.765466293296186]
Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools.
Med-LVLMs often suffer from factual hallucination, which can lead to incorrect diagnoses.
We propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs.
arXiv Detail & Related papers (2024-10-16T23:03:27Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
Social problems stemming from the shortage of radiologists are intensifying, and artificial intelligence is being highlighted as a potential solution.
Recently emerging large-scale generative AI has expanded from large language models (LLMs) to multi-modal models.
This scoping review systematically organizes existing literature on the clinical value of large-scale generative AI applications.
arXiv Detail & Related papers (2024-09-03T00:48:50Z) - MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.
It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.
Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - Pathology Foundation Models [0.0354287905099182]
Development of deep learning technologies have led to extensive research and development in pathology AI (Artificial Intelligence)
Large-scale AI models known as Foundation Models (FMs) have emerged and expanded their application scope in the healthcare field.
FMs are more accurate and applicable to a wide range of tasks compared to traditional AI.
arXiv Detail & Related papers (2024-07-31T03:58:48Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
Multimodal large language models (MLLMs) have recently transformed many domains, significantly affecting the medical field. Notably, Gemini-Vision-series (Gemini) and GPT-4-series (GPT-4) models have epitomized a paradigm shift in Artificial General Intelligence for computer vision.
This study evaluated the performance of the Gemini, GPT-4, and 4 popular large models for an exhaustive evaluation across 14 medical imaging datasets.
arXiv Detail & Related papers (2024-07-08T09:08:42Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
In Canada, prostate cancer is the most common form of cancer in men and accounted for 20% of new cancer cases for this demographic in 2022.
There has been significant interest in the development of deep neural networks for prostate cancer diagnosis, prognosis, and treatment planning using diffusion weighted imaging (DWI) data.
In this study, we explore the efficacy of latent diffusion for generating realistic prostate DWI data through the introduction of an anatomic-conditional controlled latent diffusion strategy.
arXiv Detail & Related papers (2023-11-30T15:11:03Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4V is OpenAI's newest model for multimodal medical diagnosis.
Our evaluation encompasses 17 human body systems.
GPT-4V demonstrates proficiency in distinguishing between medical image modalities and anatomy.
It faces significant challenges in disease diagnosis and generating comprehensive reports.
arXiv Detail & Related papers (2023-10-15T18:32:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.