論文の概要: Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs Fine-tuning
- arxiv url: http://arxiv.org/abs/2409.15361v1
- Date: Wed, 18 Sep 2024 08:04:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:30:54.796625
- Title: Multitask Mayhem: Unveiling and Mitigating Safety Gaps in LLMs Fine-tuning
- Title(参考訳): マルチタスク・メイヘム:LLMの微細調整の安全性向上と対策
- Authors: Essa Jan, Nouar AlDahoul, Moiz Ali, Faizan Ahmad, Fareed Zaffar, Yasir Zaki,
- Abstract要約: レッドチーム/セーフティアライメントの取り組みは、良質な(有害でない)データの微調整モデルが安全性を損なう可能性があることを示している。
本稿では,要約,コード生成,翻訳,分類などの下流タスクの微調整によるタスクの安全性の低下について検討する。
我々の研究は、より安全でロバストなモデルを保証するために、一般化されたアライメント対策の必要性を浮き彫りにしている。
- 参考スコア(独自算出の注目度): 1.3307486544794784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent breakthroughs in Large Language Models (LLMs) have led to their adoption across a wide range of tasks, ranging from code generation to machine translation and sentiment analysis, etc. Red teaming/Safety alignment efforts show that fine-tuning models on benign (non-harmful) data could compromise safety. However, it remains unclear to what extent this phenomenon is influenced by different variables, including fine-tuning task, model calibrations, etc. This paper explores the task-wise safety degradation due to fine-tuning on downstream tasks such as summarization, code generation, translation, and classification across various calibration. Our results reveal that: 1) Fine-tuning LLMs for code generation and translation leads to the highest degradation in safety guardrails. 2) LLMs generally have weaker guardrails for translation and classification, with 73-92% of harmful prompts answered, across baseline and other calibrations, falling into one of two concern categories. 3) Current solutions, including guards and safety tuning datasets, lack cross-task robustness. To address these issues, we developed a new multitask safety dataset effectively reducing attack success rates across a range of tasks without compromising the model's overall helpfulness. Our work underscores the need for generalized alignment measures to ensure safer and more robust models.
- Abstract(参考訳): 近年のLLM(Large Language Models)のブレークスルーは、コード生成から機械翻訳、感情分析など、幅広いタスクで採用されている。
レッドチーム/セーフティアライメントの取り組みは、良質な(有害でない)データの微調整モデルが安全性を損なう可能性があることを示している。
しかし、この現象が細調整タスクやモデルキャリブレーションなど、様々な変数に影響されているかは、まだ不明である。
本稿では,様々なキャリブレーションにおける要約,コード生成,翻訳,分類といった下流タスクの微調整によるタスクの安全性の低下について検討する。
私たちの結果はこう明らかです。
1) コード生成・翻訳のための微調整LDMは, 安全ガードレールの劣化率が高い。
2) LLM は一般的に, 翻訳・分類のガードレールが弱く, 73-92% の有害なプロンプトが, ベースラインおよび他のキャリブレーションにまたがって応答し, 2つのカテゴリに分類される。
3)ガードと安全チューニングデータセットを含む現在のソリューションでは、タスク間の堅牢性が欠如している。
これらの課題に対処するため、モデル全体の有用性を損なうことなく、様々なタスクにおける攻撃成功率を効果的に低減する新しいマルチタスク安全データセットを開発した。
我々の研究は、より安全でロバストなモデルを保証するために、一般化されたアライメント対策の必要性を浮き彫りにしている。
関連論文リスト
- Picky LLMs and Unreliable RMs: An Empirical Study on Safety Alignment after Instruction Tuning [39.48925539103229]
微調整された大きな言語モデル(LLM)は、その安全性のアライメントを必然的に低下させる。
この現象により、モデルは不適切な応答を与えるのにより敏感になる。
我々の研究は、微調整中に安全アライメントを維持する複雑さを強調している。
論文 参考訳(メタデータ) (2025-02-03T07:09:09Z) - Rethinking Bottlenecks in Safety Fine-Tuning of Vision Language Models [25.606641582511106]
モデル性能を向上させるために,マルチイメージ入力と安全チェーン・オブ・ソート(CoT)ラベルを微粒な推論ロジックとして統合する新しいデータセットを提案する。
実験の結果,MISを用いた微調整InternVL2.5-8Bは,マルチイメージタスクに挑戦する上で,強力なオープンソースモデルとAPIベースモデルの両方を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2025-01-30T17:59:45Z) - Safeguard Fine-Tuned LLMs Through Pre- and Post-Tuning Model Merging [43.44112117935541]
下流タスクのための細調整された大型言語モデル(LLM)は、安全に整合したLLMの安全性を低下させる。
下流タスク性能を向上しつつ, LLM 固有の安全性を維持する手法を提案する。
論文 参考訳(メタデータ) (2024-12-27T08:03:22Z) - Multimodal Situational Safety [73.63981779844916]
マルチモーダル・シチュエーション・セーフティ(Multimodal situational Safety)と呼ばれる新しい安全課題の評価と分析を行う。
MLLMが言語やアクションを通じても安全に応答するためには、言語クエリが対応する視覚的コンテキスト内での安全性への影響を評価する必要があることが多い。
我々は,現在のMLLMの状況安全性能を評価するためのマルチモーダル状況安全ベンチマーク(MSSBench)を開発した。
論文 参考訳(メタデータ) (2024-10-08T16:16:07Z) - What Makes and Breaks Safety Fine-tuning? A Mechanistic Study [64.9691741899956]
安全性の微調整は、大規模な言語モデル(LLM)を、安全なデプロイメントのための人間の好みに合わせるのに役立つ。
安全でない入力の健全な側面をキャプチャする合成データ生成フレームワークを設計する。
これを用いて,3つのよく知られた安全微調整手法について検討する。
論文 参考訳(メタデータ) (2024-07-14T16:12:57Z) - Refuse Whenever You Feel Unsafe: Improving Safety in LLMs via Decoupled Refusal Training [67.30423823744506]
本研究では,Large Language Models (LLMs) の安全性チューニングにおける重要なギャップについて考察する。
我々は,LLMに対して,いかなる応答位置においても有害なプロンプトへのコンプライアンスを拒否する権限を与える新しいアプローチであるDecoupled Refusal Training(DeRTa)を導入する。
DeRTaは、(1)安全応答の開始に有害な応答のセグメントを付加することにより、安全でないコンテンツを認識・回避するようモデルに訓練する、(1)有害応答前フィックスによる最大限の類似度推定、(2)有害応答の開始を通して潜在的害から安全拒絶へ継続的に移行する能力を持つ強化遷移最適化(RTO)という2つの新しいコンポーネントを組み込んでいる。
論文 参考訳(メタデータ) (2024-07-12T09:36:33Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatchingは包括的なPSAのための新しいフレームワークである。
textscSafePatchingはベースラインメソッドよりも包括的なPSAを実現する。
textscSafePatchingは、連続的なPSAシナリオにおいて、その優位性を示している。
論文 参考訳(メタデータ) (2024-05-22T16:51:07Z) - Fine-Tuning, Quantization, and LLMs: Navigating Unintended Outcomes [0.0]
大規模言語モデル(LLM)は、チャットボットやオートタスク補完エージェントなど、さまざまな領域で広く採用されている。
これらのモデルは、ジェイルブレイク、プロンプトインジェクション、プライバシリーク攻撃などの安全性上の脆弱性の影響を受けやすい。
本研究では,これらの変更がLLMの安全性に与える影響について検討する。
論文 参考訳(メタデータ) (2024-04-05T20:31:45Z) - Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack [20.551730528019338]
メインストリームNLPタスクは安全配慮に適切に適合しているか?
本研究は, 各種NLPタスクの安全性の相違について明らかにした。
セキュリティアライメントの弱いタスクを悪用するアタックは、従来より堅牢と考えられていたタスクの整合性を損なう可能性がある。
論文 参考訳(メタデータ) (2023-12-12T01:39:29Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Fake Alignment: Are LLMs Really Aligned Well? [91.26543768665778]
本研究では,複数質問とオープンエンド質問の相違点について検討した。
ジェイルブレイク攻撃パターンの研究にインスパイアされた我々は、これが不一致の一般化によって引き起こされたと論じている。
論文 参考訳(メタデータ) (2023-11-10T08:01:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。