論文の概要: Geometric Relational Embeddings
- arxiv url: http://arxiv.org/abs/2409.15369v1
- Date: Wed, 18 Sep 2024 22:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:30:54.777456
- Title: Geometric Relational Embeddings
- Title(参考訳): 幾何学的関係埋め込み
- Authors: Bo Xiong,
- Abstract要約: 本稿では,基礎となるシンボル構造を尊重する埋め込みのパラダイムであるリレーショナル埋め込みを提案する。
実世界のベンチマークデータセットから得られた結果は、幾何学的リレーショナル埋め込みの有効性を示す。
- 参考スコア(独自算出の注目度): 19.383110247906256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relational representation learning transforms relational data into continuous and low-dimensional vector representations. However, vector-based representations fall short in capturing crucial properties of relational data that are complex and symbolic. We propose geometric relational embeddings, a paradigm of relational embeddings that respect the underlying symbolic structures. Specifically, this dissertation introduces various geometric relational embedding models capable of capturing: 1) complex structured patterns like hierarchies and cycles in networks and knowledge graphs; 2) logical structures in ontologies and logical constraints applicable for constraining machine learning model outputs; and 3) high-order structures between entities and relations. Our results obtained from benchmark and real-world datasets demonstrate the efficacy of geometric relational embeddings in adeptly capturing these discrete, symbolic, and structured properties inherent in relational data.
- Abstract(参考訳): リレーショナル表現学習は、関係データを連続および低次元ベクトル表現に変換する。
しかし、ベクトルに基づく表現は、複雑で象徴的な関係データの重要な特性を捉えるのに不足する。
本稿では,基礎となる記号構造を尊重する関係埋め込みのパラダイムである幾何学的関係埋め込みを提案する。
具体的には、この論文は様々な幾何学的関係埋め込みモデルを導入している。
1)ネットワークやナレッジグラフにおける階層やサイクルのような複雑な構造化パターン。
2 オントロジーにおける論理構造及び機械学習モデル出力の制約に適用可能な論理的制約
3) 実体と関係の高次構造
ベンチマークと実世界のデータセットから得られた結果は,これらの離散的,象徴的,構造的特性を有意に捉える上で,幾何的リレーショナル埋め込みの有効性を示す。
関連論文リスト
- Geometry of the Space of Partitioned Networks: A Unified Theoretical and Computational Framework [3.69102525133732]
ネットワークの空間」は、従来の統計ツールでは適切に記述できない複雑な構造を持つ。
本稿では,グラフやハイパーグラフ,あるいはノードが分類クラスに分割されたグラフなどの一般化されたネットワーク構造をモデル化するための測度理論形式について紹介する。
我々は、我々の計量が非負曲率のアレクサンドロフ空間であることを示し、この構造を利用して、幾何データ解析タスクで一般的に生じる特定の関数の勾配を定義する。
論文 参考訳(メタデータ) (2024-09-10T07:58:37Z) - Compositional Structures in Neural Embedding and Interaction Decompositions [101.40245125955306]
ニューラルネットワークにおけるベクトル埋め込みにおける線形代数構造間の基本的な対応について述べる。
相互作用分解」の観点から構成構造の特徴づけを導入する。
モデルの表現の中にそのような構造が存在するためには、必要かつ十分な条件を確立する。
論文 参考訳(メタデータ) (2024-07-12T02:39:50Z) - Discovering Abstract Symbolic Relations by Learning Unitary Group Representations [7.303827428956944]
記号演算完了(SOC)の原理的アプローチについて検討する。
SOCは離散記号間の抽象的関係をモデル化する際、ユニークな挑戦となる。
SOCは最小限のモデル(双線型写像)で、新しい分解アーキテクチャで効率的に解けることを実証する。
論文 参考訳(メタデータ) (2024-02-26T20:18:43Z) - Learning Hierarchical Relational Representations through Relational Convolutions [2.5322020135765464]
本稿では、より複雑な関係性の特徴を捉える計算機構を備えたニューラルネットワークである「リレーショナル畳み込みネットワーク」を紹介する。
このフレームワークの重要なコンポーネントは、グラフレットフィルタを畳み込み、オブジェクトのグループ内の関係パターンをキャプチャする新しい操作である。
アーキテクチャのモチベーションと詳細、およびリレーショナル畳み込みネットワークが階層構造を持つリレーショナルタスクをモデル化するための効果的なフレームワークを提供するための一連の実験を示す。
論文 参考訳(メタデータ) (2023-10-05T01:22:50Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Query Structure Modeling for Inductive Logical Reasoning Over Knowledge
Graphs [67.043747188954]
KGに対する帰納的論理的推論のための構造モデル付きテキスト符号化フレームワークを提案する。
線形化されたクエリ構造とエンティティを、事前訓練された言語モデルを使ってエンコードして、回答を見つける。
2つの帰納的論理推論データセットと3つの帰納的推論データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-23T01:25:29Z) - Geometric Relational Embeddings: A Survey [39.57716353191535]
本研究では,データ表現に使用される埋め込みジオメトリに基づいて,幾何的リレーショナル埋め込みを下位に調査し,それらを分類する。
埋め込みの各種類の所望の特性(すなわち帰納バイアス)を特定し、潜在的な将来の研究について議論する。
論文 参考訳(メタデータ) (2023-04-24T09:33:30Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Transformer-based Dual Relation Graph for Multi-label Image Recognition [56.12543717723385]
本稿では,トランスフォーマーをベースとしたデュアルリレーショナル学習フレームワークを提案する。
相関の2つの側面、すなわち構造関係グラフと意味関係グラフについて検討する。
提案手法は,2つのポピュラーなマルチラベル認識ベンチマークにおいて,最先端性を実現する。
論文 参考訳(メタデータ) (2021-10-10T07:14:52Z) - DensE: An Enhanced Non-commutative Representation for Knowledge Graph
Embedding with Adaptive Semantic Hierarchy [4.607120217372668]
本研究では,関係の複雑な構成パターンをモデル化するための新しい知識グラフ埋め込み手法DensEを開発した。
本手法は,SO(3)群に基づく回転作用素と3次元ユークリッド空間におけるスケーリング作用素に各関係を分解する。
複数のベンチマーク知識グラフの実験結果から、DensEはリンク予測の欠如に対して現在の最先端モデルよりも優れていた。
論文 参考訳(メタデータ) (2020-08-11T06:45:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。