論文の概要: Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data
- arxiv url: http://arxiv.org/abs/2409.15374v1
- Date: Thu, 19 Sep 2024 23:08:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:20:55.088269
- Title: Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data
- Title(参考訳): 自閉症診断のための説明可能なAI:fMRIデータを用いた臨界脳領域の同定
- Authors: Suryansh Vidya, Kush Gupta, Amir Aly, Andy Wills, Emmanuel Ifeachor, Rohit Shankar,
- Abstract要約: 自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく向上させることが示されている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
- 参考スコア(独自算出の注目度): 0.29687381456163997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals. However, diagnostics methods for ASD rely on assessments based on clinical presentation that are prone to bias and can be challenging to arrive at an early diagnosis. There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy. Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data. Extensive research has been conducted on creating models that classify ASD using resting-state functional Magnetic Resonance Imaging (fMRI) data. However, existing models lack interpretability. This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working. The dataset used is a preprocessed version of the Autism Brain Imaging Data Exchange (ABIDE) with 884 samples. Our findings show a model that can accurately classify ASD and highlight critical brain regions differing between ASD and typical controls, with potential implications for early diagnosis and understanding of the neural basis of ASD. These findings are validated by studies in the literature that use different datasets and modalities, confirming that the model actually learned characteristics of ASD and not just the dataset. This study advances the field of explainable AI in medical imaging by providing a robust and interpretable model, thereby contributing to a future with objective and reliable ASD diagnostics.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)の早期診断と介入は、自閉症者の生活の質を著しく改善することが示されている。
しかし, ASDの診断法は, 偏りが強く早期診断に到達し難い臨床診断に基づく評価に頼っている。
ASDの客観的バイオマーカーは診断精度の向上に役立つ。
深層学習(DL)は,医療画像データから疾患や病態を診断する上で,優れた成果を上げている。
静止状態機能型磁気共鳴イメージング(fMRI)データを用いてASDを分類するモデルの作成について、広範囲にわたる研究がなされている。
しかし、既存のモデルは解釈性に欠ける。
本研究の目的は, ASD の精度と解釈性を向上させることであり, ASD を正確に分類できるだけでなく,その動作に関する説明可能な洞察を提供する DL モデルを作成することである。
使用されるデータセットは、Autism Brain Imaging Data Exchange (ABIDE)の事前処理されたバージョンで、884のサンプルがある。
以上の結果から, ASDの早期診断と神経基盤の理解に影響を及ぼす可能性が示唆された, ASDと典型的なコントロールの異なる重要な脳領域を正確に分類できるモデルが示唆された。
これらの結果は、異なるデータセットとモダリティを使用する文献の研究によって検証され、モデルがデータセットだけでなく、実際にASDの特徴を学んだことが確認された。
本研究は、堅牢で解釈可能なモデルを提供することにより、医用画像における説明可能なAIの分野を前進させ、客観的かつ信頼性の高いASD診断に寄与する。
関連論文リスト
- MINDSETS: Multi-omics Integration with Neuroimaging for Dementia Subtyping and Effective Temporal Study [0.7751705157998379]
アルツハイマー病(AD)と血管性認知症(VaD)は最も多い認知症である。
本稿では、ADとVaDを正確に区別する革新的なマルチオミクス手法を提案し、89.25%の精度で診断を行う。
論文 参考訳(メタデータ) (2024-11-06T10:13:28Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
本稿では, 構造的磁気共鳴画像(sMRI)に基づく自閉症スペクトラム障害の診断を, 異常検出手法を用いて提案する。
GAN(Generative Adversarial Network)は、健康な被験者のsMRIスキャンでのみ訓練される。
実験の結果、ASD検出フレームワークは最先端のトレーニングデータと互換性があり、トレーニングデータもはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-02-21T04:37:25Z) - Proposing a System Level Machine Learning Hybrid Architecture and
Approach for a Comprehensive Autism Spectrum Disorder Diagnosis [1.2691047660244335]
自閉症スペクトラム障害(Autism Spectrum disorder、ASD)は、知的発達、社会的行動、顔の特徴に影響を及ぼす重度の神経精神疾患である。
ASDの診断精度を向上させるために,社会行動と顔の特徴データの両方をフル活用したハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-09-18T04:33:09Z) - Automatic Assessment of Alzheimer's Disease Diagnosis Based on Deep
Learning Techniques [111.165389441988]
本研究では, MRI(sagittal magnetic resonance images)における疾患の存在を自動的に検出するシステムを開発する。
矢状面MRIは一般的には使われていないが、この研究は、少なくとも、ADを早期に同定する他の平面からのMRIと同じくらい効果があることを証明した。
本研究は,これらの分野でDLモデルを構築できることを実証する一方,TLは少ない例でタスクを完了するための必須のツールである。
論文 参考訳(メタデータ) (2021-05-18T11:37:57Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
我々は3次元畳み込みオートエンコーダを用いて、無関係な空間画像表現を実現するとともに、ABIDEデータ上で既存のアプローチより優れていることを示す。
論文 参考訳(メタデータ) (2020-10-14T16:50:50Z) - A Convolutional Neural Network for gaze preference detection: A
potential tool for diagnostics of autism spectrum disorder in children [0.0]
本稿では,1分間の刺激映像から抽出した画像を用いた視線予測のための畳み込みニューラルネットワーク(CNN)アルゴリズムを提案する。
本モデルでは,被検者の視線方向の予測に高い精度とロバスト性を実現した。
論文 参考訳(メタデータ) (2020-07-28T18:47:21Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
提案した深層学習モデル ASD-DiagNet は神経型スキャンから ASD の脳スキャンの分類に一貫した精度を示す。
我々の手法はAuto-ASD-Networkと呼ばれ、ディープラーニングとサポートベクトルマシン(SVM)を組み合わせて、ニューロタイプスキャンからASDスキャンを分類する。
論文 参考訳(メタデータ) (2020-03-02T18:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。