Uncovering Coordinated Cross-Platform Information Operations Threatening the Integrity of the 2024 U.S. Presidential Election Online Discussion
- URL: http://arxiv.org/abs/2409.15402v2
- Date: Wed, 30 Oct 2024 05:52:21 GMT
- Title: Uncovering Coordinated Cross-Platform Information Operations Threatening the Integrity of the 2024 U.S. Presidential Election Online Discussion
- Authors: Marco Minici, Luca Luceri, Federico Cinus, Emilio Ferrara,
- Abstract summary: Information Operations pose a significant threat to the integrity of democratic processes.
In anticipation of the 2024 U.S. presidential election, we present a study aimed at uncovering the digital traces of coordinated IOs on $mathbbX$ (formerly Twitter)
Using our machine learning framework for detecting online coordination, we analyze a dataset comprising election-related conversations on $mathbbX$ from May 2024.
- Score: 8.557128766155229
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information Operations (IOs) pose a significant threat to the integrity of democratic processes, with the potential to influence election-related online discourse. In anticipation of the 2024 U.S. presidential election, we present a study aimed at uncovering the digital traces of coordinated IOs on $\mathbb{X}$ (formerly Twitter). Using our machine learning framework for detecting online coordination, we analyze a dataset comprising election-related conversations on $\mathbb{X}$ from May 2024. This reveals a network of coordinated inauthentic actors, displaying notable similarities in their link-sharing behaviors. Our analysis shows concerted efforts by these accounts to disseminate misleading, redundant, and biased information across the Web through a coordinated cross-platform information operation: The links shared by this network frequently direct users to other social media platforms or suspicious websites featuring low-quality political content and, in turn, promoting the same $\mathbb{X}$ and YouTube accounts. Members of this network also shared deceptive images generated by AI, accompanied by language attacking political figures and symbolic imagery intended to convey power and dominance. While $\mathbb{X}$ has suspended a subset of these accounts, more than 75% of the coordinated network remains active. Our findings underscore the critical role of developing computational models to scale up the detection of threats on large social media platforms, and emphasize the broader implications of these techniques to detect IOs across the wider Web.
Related papers
- On the Use of Proxies in Political Ad Targeting [49.61009579554272]
We show that major political advertisers circumvented mitigations by targeting proxy attributes.
Our findings have crucial implications for the ongoing discussion on the regulation of political advertising.
arXiv Detail & Related papers (2024-10-18T17:15:13Z) - Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach [9.350629400940493]
We focus on the 2020 US presidential election and create a large-scale dataset from Twitter.
To detect political opinions in tweets, we build a user-tweet bipartite graph based on users' posting and retweeting behaviors.
We introduce a novel skip aggregation mechanism that makes tweet nodes aggregate information from second-order neighbors.
arXiv Detail & Related papers (2023-04-22T10:38:35Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Exploiting the Right: Inferring Ideological Alignment in Online
Influence Campaigns Using Shared Images [0.0]
This work advances investigations into the visual media shared by agents in disinformation campaigns by characterizing the images shared by accounts identified by Twitter as part of such campaigns.
Using images shared by US politicians' Twitter accounts as a baseline and training set, we build models for inferring the ideological presentation of accounts using the images they share.
arXiv Detail & Related papers (2022-04-13T15:22:17Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - News consumption and social media regulations policy [70.31753171707005]
We analyze two social media that enforced opposite moderation methods, Twitter and Gab, to assess the interplay between news consumption and content regulation.
Our results show that the presence of moderation pursued by Twitter produces a significant reduction of questionable content.
The lack of clear regulation on Gab results in the tendency of the user to engage with both types of content, showing a slight preference for the questionable ones which may account for a dissing/endorsement behavior.
arXiv Detail & Related papers (2021-06-07T19:26:32Z) - Cross-Domain Learning for Classifying Propaganda in Online Contents [67.10699378370752]
We present an approach to leverage cross-domain learning, based on labeled documents and sentences from news and tweets, as well as political speeches with a clear difference in their degrees of being propagandistic.
Our experiments demonstrate the usefulness of this approach, and identify difficulties and limitations in various configurations of sources and targets for the transfer step.
arXiv Detail & Related papers (2020-11-13T10:19:13Z) - A Survey on Computational Propaganda Detection [31.42480765785039]
Propaganda campaigns aim at influencing people's mindset with the purpose of advancing a specific agenda.
They exploit the anonymity of the Internet, the micro-profiling ability of social networks, and the ease of automatically creating and managing coordinated networks of accounts.
arXiv Detail & Related papers (2020-07-15T22:25:51Z) - Automatic Detection of Influential Actors in Disinformation Networks [0.0]
This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors.
System detects IO accounts with 96% precision, 79% recall, and 96% area-under-the-PR-curve.
Results are corroborated with independent sources of known IO accounts from U.S. Congressional reports, investigative journalism, and IO datasets provided by Twitter.
arXiv Detail & Related papers (2020-05-21T20:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.