Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
- URL: http://arxiv.org/abs/2411.17931v3
- Date: Mon, 07 Apr 2025 06:33:58 GMT
- Title: Combining Threat Intelligence with IoT Scanning to Predict Cyber Attack
- Authors: Jubin Abhishek Soni,
- Abstract summary: Malicious actors, including hackers and hacktivist groups, often disseminate ideological content and coordinate activities through the "Dark Web"<n>This paper proposes a novel predictive threat intelligence framework designed to systematically collect, analyze, and visualize Dark Web data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While the Web has become a global platform for communication; malicious actors, including hackers and hacktivist groups, often disseminate ideological content and coordinate activities through the "Dark Web" an obscure counterpart of the conventional web. Presently, challenges such as information overload and the fragmented nature of cyber threat data impede comprehensive profiling of these actors, thereby limiting the efficacy of predictive analyses of their online activities. Concurrently, the proliferation of internet-connected devices has surpassed the global human population, with this disparity projected to widen as the Internet of Things (IoT) expands. Technical communities are actively advancing IoT-related research to address its growing societal integration. This paper proposes a novel predictive threat intelligence framework designed to systematically collect, analyze, and visualize Dark Web data to identify malicious websites and correlate this information with potential IoT vulnerabilities. The methodology integrates automated data harvesting, analytical techniques, and visual mapping tools, while also examining vulnerabilities in IoT devices to assess exploitability. By bridging gaps in cybersecurity research, this study aims to enhance predictive threat modeling and inform policy development, thereby contributing to intelligence research initiatives focused on mitigating cyber risks in an increasingly interconnected digital ecosystem.
Related papers
- Integrating Graph Theoretical Approaches in Cybersecurity Education CSCI-RTED [0.0]
Graph theory offers a powerful framework for modeling relationships within cyber ecosystems.
This paper develops an enriched version of the widely recognized NSL-KDD dataset, incorporating graph-theoretical concepts to enhance its practical value.
arXiv Detail & Related papers (2025-04-23T19:08:30Z) - Real AI Agents with Fake Memories: Fatal Context Manipulation Attacks on Web3 Agents [36.49717045080722]
This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios.
We introduce the concept of context manipulation, a comprehensive attack vector that exploits unprotected context surfaces.
To quantify these vulnerabilities, we design CrAIBench, a Web3 domain-specific benchmark that evaluates the robustness of AI agents against context manipulation attacks.
arXiv Detail & Related papers (2025-03-20T15:44:31Z) - Cyber Defense Reinvented: Large Language Models as Threat Intelligence Copilots [36.809323735351825]
CYLENS is a cyber threat intelligence copilot powered by large language models (LLMs)
CYLENS is designed to assist security professionals throughout the entire threat management lifecycle.
It supports threat attribution, contextualization, detection, correlation, prioritization, and remediation.
arXiv Detail & Related papers (2025-02-28T07:16:09Z) - Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies [49.57278643040602]
Distributed Denial of Service (DDoS) attacks persist as significant threats to online services and infrastructure.
This paper offers a comprehensive survey of emerging DDoS attacks and detection strategies over the past decade.
arXiv Detail & Related papers (2025-02-27T11:22:25Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
Traditional centralized security methods often struggle to balance privacy preservation and real-time threat detection in IoT networks.
This study proposes a Federated Learning-Driven Cybersecurity Framework designed specifically for IoT environments.
Secure aggregation of locally trained models is achieved using homomorphic encryption, allowing collaborative learning without exposing sensitive information.
arXiv Detail & Related papers (2025-02-14T23:11:51Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
Adversarial attacks, particularly those targeting vulnerabilities in deep learning models, present a nuanced and substantial threat to cybersecurity.
Our study delves into adversarial learning threats such as Data Poisoning, Test Time Evasion, and Reverse Engineering.
Our research lays the groundwork for strengthening defense mechanisms to address the potential breaches in network security and privacy posed by adversarial attacks.
arXiv Detail & Related papers (2024-12-18T14:21:46Z) - Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
Attacks against the Internet of Things (IoT) are rising as devices, applications, and interactions become more networked and integrated.
To efficiently secure IoT devices, real-time detection of intrusion systems is critical.
This paper investigates the latest research on machine learning-based intrusion detection strategies for IoT security.
arXiv Detail & Related papers (2024-10-01T19:24:34Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
Social engineering (SE) attacks remain a significant threat to both individuals and organizations.
The advancement of Artificial Intelligence (AI) has potentially intensified these threats by enabling more personalized and convincing attacks.
This survey paper categorizes SE attack mechanisms, analyzes their evolution, and explores methods for measuring these threats.
arXiv Detail & Related papers (2024-07-22T17:37:31Z) - Critical Analysis and Countermeasures Tactics, Techniques and Procedures (TTPs) that targeting civilians: A case study On Pegasus [0.0]
This paper investigates the targeting of journalists and activists by the malware Pegasus.
Examines the far-reaching consequences of these attacks for cybersecurity policy.
Describes some of the most important tactics that businesses may use to reduce the danger of cyberattacks.
arXiv Detail & Related papers (2023-10-01T19:28:03Z) - Machine Learning for Detection and Mitigation of Web Vulnerabilities and
Web Attacks [0.0]
Cross-site scripting (XSS) and cross-site request forgery (CSRF) have been a great concern in the field of web security.
Several ideas have been put forth that can be used to improve the performance of detecting these web vulnerabilities.
Machine learning techniques have lately been used by researchers to defend against XSS and CSRF.
arXiv Detail & Related papers (2023-04-27T18:27:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Deep Learning Algorithm for Threat Detection in Hackers Forum (Deep Web) [0.0]
We propose a novel approach for detecting cyberthreats using a deep learning algorithm Long Short-Term Memory (LSTM)
Our model can be easily deployed by organizations in securing digital communications and detection of vulnerability exposure before cyberattack.
arXiv Detail & Related papers (2022-02-03T07:49:44Z) - A Crawler Architecture for Harvesting the Clear, Social, and Dark Web
for IoT-Related Cyber-Threat Intelligence [1.1661238776379117]
The clear, social, and dark web have lately been identified as rich sources of valuable cyber-security information.
We present a novel crawling architecture for transparently harvesting data from security websites in the clear web, security forums in the social web, and hacker forums/marketplaces in the dark web.
arXiv Detail & Related papers (2021-09-14T19:26:08Z) - Social Media Monitoring for IoT Cyber-Threats [0.3249853429482705]
We focus on social media monitoring and investigate real-time Cyber-Threat Intelligence detection from the Twitter stream.
We propose a novel social media monitoring system tailored to the IoT domain.
arXiv Detail & Related papers (2021-09-09T14:32:24Z) - Artificial Neural Network for Cybersecurity: A Comprehensive Review [0.0]
This paper provides a systematic review of the application of deep learning (DL) approaches for cybersecurity.
A discussion is provided on the currently prevailing cyber-attacks in IoT and other networks, and the effectiveness of DL methods to manage these attacks.
Finally, this article discusses the importance of cybersecurity for reliable and practicable IoT-driven healthcare systems.
arXiv Detail & Related papers (2021-06-20T09:32:48Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Timely Detection and Mitigation of Stealthy DDoS Attacks via IoT
Networks [30.68108039722565]
Internet of Things (IoT) devices are susceptible to being compromised and being part of a new type of stealthy Distributed Denial of Service (DDoS) attack, called Mongolian DDoS.
This study proposes a novel anomaly-based Intrusion Detection System (IDS) that is capable of timely detecting and mitigating this emerging type of DDoS attacks.
arXiv Detail & Related papers (2020-06-15T00:54:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.