論文の概要: Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool
- arxiv url: http://arxiv.org/abs/2409.15491v1
- Date: Mon, 23 Sep 2024 19:22:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 12:57:29.199358
- Title: Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool
- Title(参考訳): 乳がん再発の正確な予測のための計算病理:深層学習ツールの開発と検証
- Authors: Ziyu Su, Yongxin Guo, Robert Wesolowski, Gary Tozbikian, Nathaniel S. O'Connell, M. Khalid Khan Niazi, Metin N. Gurcan,
- Abstract要約: Deep-BCR-Autoは、乳がん再発リスクを予測するディープラーニングベースの計算病理学アプローチである。
我々の方法論は2つの独立したコホートで検証された。
Deep-BCR-Autoは、患者を低頻度と高頻度のリスクカテゴリに分類する上で、堅牢なパフォーマンスを示した。
- 参考スコア(独自算出の注目度): 0.40205899806543505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate recurrence risk stratification is crucial for optimizing treatment plans for breast cancer patients. Current prognostic tools like Oncotype DX (ODX) offer valuable genomic insights for HR+/HER2- patients but are limited by cost and accessibility, particularly in underserved populations. In this study, we present Deep-BCR-Auto, a deep learning-based computational pathology approach that predicts breast cancer recurrence risk from routine H&E-stained whole slide images (WSIs). Our methodology was validated on two independent cohorts: the TCGA-BRCA dataset and an in-house dataset from The Ohio State University (OSU). Deep-BCR-Auto demonstrated robust performance in stratifying patients into low- and high-recurrence risk categories. On the TCGA-BRCA dataset, the model achieved an area under the receiver operating characteristic curve (AUROC) of 0.827, significantly outperforming existing weakly supervised models (p=0.041). In the independent OSU dataset, Deep-BCR-Auto maintained strong generalizability, achieving an AUROC of 0.832, along with 82.0% accuracy, 85.0% specificity, and 67.7% sensitivity. These findings highlight the potential of computational pathology as a cost-effective alternative for recurrence risk assessment, broadening access to personalized treatment strategies. This study underscores the clinical utility of integrating deep learning-based computational pathology into routine pathological assessment for breast cancer prognosis across diverse clinical settings.
- Abstract(参考訳): 乳がん患者に対する治療計画の最適化には,正確な再発リスク階層化が不可欠である。
Oncotype DX (ODX) のような現在の予後診断ツールは、HR+/HER2-患者に貴重なゲノム情報を提供するが、コストとアクセシビリティによって制限されている。
本研究では,H&E-Stained whole slide image (WSIs) から乳がん再発リスクを予測するディープ・BCR-Autoを提案する。
提案手法はTGA-BRCAデータセットとオハイオ州立大学(OSU)の社内データセットの2つの独立したコホートで検証された。
Deep-BCR-Autoは、患者を低頻度と高頻度のリスクカテゴリに分類する上で、堅牢なパフォーマンスを示した。
TCGA-BRCAデータセットでは、受信機動作特性曲線 (AUROC) 0.827の領域を達成し、既存の弱教師付きモデル (p=0.041) を著しく上回った。
独立OSUデータセットでは、Deep-BCR-Autoは82.0%の精度、85.0%の特異性、67.7%の感度でAUROCの0.832を達成し、強力な一般化性を維持した。
これらの知見は, 再発リスク評価のための費用対効果の代替手段としての計算病理の可能性を強調し, パーソナライズされた治療戦略へのアクセスを広げた。
本研究は, 深層学習に基づく計算病理を, 様々な臨床環境における乳がん予後の定期的病態評価に組み込むことの臨床的有用性を明らかにするものである。
関連論文リスト
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide image (WSI) は、特に精度オンコロジーにおいて、ディープラーニングに基づく診断ソリューションの開発に広く利用されている。
これらの診断ソフトウェアのほとんどは、トレーニングやテストデータにおけるバイアスや不純物に弱いため、不正確な診断につながる可能性がある。
我々は、WSIを6つの組織領域に分離する、頑健だが軽量なディープラーニングベースの分類器であるHistoROIを紹介した。
論文 参考訳(メタデータ) (2024-09-29T07:08:45Z) - BioFusionNet: Deep Learning-Based Survival Risk Stratification in ER+ Breast Cancer Through Multifeature and Multimodal Data Fusion [16.83901927767791]
画像から得られる特徴を遺伝的・臨床的データと融合して全体像を得る深層学習フレームワークであるBioFusionNetを提案する。
本モデルでは, 平均一致率0.77, 曲線0.84の時間依存領域を達成し, 最先端の手法より優れていた。
論文 参考訳(メタデータ) (2024-02-16T14:19:33Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
本研究の目的は,スライド画像全体と臨床病理学的データを分析し,関連する乳癌再発リスクを予測するマルチモデルアプローチを開発することである。
提案手法では,特徴抽出に畳み込みニューラルネットワーク,コンテキストアグリゲーションに視覚変換器を用いる。
論文 参考訳(メタデータ) (2024-01-28T23:33:56Z) - A Robust Deep Learning Method with Uncertainty Estimation for the
Pathological Classification of Renal Cell Carcinoma based on CT Images [10.860934781772098]
開発した深層学習モデルは,RCCの病的サブタイプを予測する上で,頑健な性能を示した。
統合された不確実性は,臨床的意思決定を支援する上で重要なモデル信頼の重要性を強調した。
論文 参考訳(メタデータ) (2023-11-01T15:07:39Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis [1.1470070927586016]
我々は,グローバルサロゲート(GS)法,個人期待(ICE)プロット,条件シェープ値(SV)などの解釈可能性技術を用いた。
乳がん診断における最良の成績は,提案したERN(精度96.6%,ROC曲線0.96)により得られた。
論文 参考訳(メタデータ) (2022-02-04T13:41:30Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。