論文の概要: Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling
- arxiv url: http://arxiv.org/abs/2409.15626v1
- Date: Tue, 24 Sep 2024 00:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 11:32:56.022930
- Title: Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling
- Title(参考訳): Qualitative Insights Tool (QualIT): LLM強化トピックモデリング
- Authors: Satya Kapoor, Alex Gil, Sreyoshi Bhaduri, Anshul Mittal, Rutu Mulkar,
- Abstract要約: 本稿では,大規模言語モデルと既存のクラスタリングに基づくトピックモデリングアプローチを統合する新しいアプローチを提案する。
我々は,ニュース記事の大規模コーパスに対するアプローチを評価し,トピックコヒーレンスとトピックの多様性の大幅な向上を実証した。
- 参考スコア(独自算出の注目度): 1.0949553365997655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic modeling is a widely used technique for uncovering thematic structures from large text corpora. However, most topic modeling approaches e.g. Latent Dirichlet Allocation (LDA) struggle to capture nuanced semantics and contextual understanding required to accurately model complex narratives. Recent advancements in this area include methods like BERTopic, which have demonstrated significantly improved topic coherence and thus established a new standard for benchmarking. In this paper, we present a novel approach, the Qualitative Insights Tool (QualIT) that integrates large language models (LLMs) with existing clustering-based topic modeling approaches. Our method leverages the deep contextual understanding and powerful language generation capabilities of LLMs to enrich the topic modeling process using clustering. We evaluate our approach on a large corpus of news articles and demonstrate substantial improvements in topic coherence and topic diversity compared to baseline topic modeling techniques. On the 20 ground-truth topics, our method shows 70% topic coherence (vs 65% & 57% benchmarks) and 95.5% topic diversity (vs 85% & 72% benchmarks). Our findings suggest that the integration of LLMs can unlock new opportunities for topic modeling of dynamic and complex text data, as is common in talent management research contexts.
- Abstract(参考訳): トピックモデリングは、大きなテキストコーパスから主題構造を明らかにするために広く用いられている手法である。
しかし、ほとんどのトピックモデリングアプローチ、例えばLalatnt Dirichlet Allocation (LDA)は、複雑な物語を正確にモデル化するために必要なニュアンスドセマンティクスと文脈理解を捉えるのに苦労している。
この領域の最近の進歩にはBERTopicのような手法があり、これはトピックコヒーレンスを大幅に改善し、ベンチマークのための新しい標準を確立した。
本稿では,大規模言語モデル(LLM)と既存のクラスタリングに基づくトピックモデリングアプローチを統合する新しいアプローチQualITを提案する。
提案手法は,LLMの深い文脈理解と強力な言語生成機能を利用して,クラスタリングを用いたトピックモデリングプロセスを強化する。
我々は,ニュース記事の大規模コーパスに対するアプローチを評価し,トピックコヒーレンスとトピックの多様性を,ベースラインのトピックモデリング技術と比較して大幅に改善したことを示す。
20の地道なトピックでは、70%のトピックコヒーレンス(vs 65%と57%のベンチマーク)と95.5%のトピック多様性(vs 85%と72%のベンチマーク)を示す。
この結果から,LLMの統合は,人材管理研究の文脈でよく見られるような,動的かつ複雑なテキストデータのトピックモデリングの新たな機会を解放できる可能性が示唆された。
関連論文リスト
- A Survey of Small Language Models [104.80308007044634]
小言語モデル (SLM) は, 計算資源の最小化による言語タスクの効率化と性能の向上により, ますます重要になってきている。
本稿では,SLMのアーキテクチャ,トレーニング技術,モデル圧縮技術に着目した総合的な調査を行う。
論文 参考訳(メタデータ) (2024-10-25T23:52:28Z) - Enhancing Short-Text Topic Modeling with LLM-Driven Context Expansion and Prefix-Tuned VAEs [25.915607750636333]
本稿では,大規模言語モデル(LLM)を利用して,トピックモデリングを適用する前に,短いテキストをより詳細なシーケンスに拡張する手法を提案する。
提案手法は,データ空間が極端である実世界のデータセットに対する広範な実験により,短文のトピックモデリング性能を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-04T01:28:56Z) - Semantic-Driven Topic Modeling Using Transformer-Based Embeddings and Clustering Algorithms [6.349503549199403]
本研究は,トピック抽出プロセスのための革新的エンド・ツー・エンドのセマンティクス駆動トピックモデリング手法を提案する。
本モデルは,事前学習したトランスフォーマーベース言語モデルを用いて文書埋め込みを生成する。
ChatGPTや従来のトピックモデリングアルゴリズムと比較して、我々のモデルはより一貫性があり有意義なトピックを提供する。
論文 参考訳(メタデータ) (2024-09-30T18:15:31Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Enhanced Short Text Modeling: Leveraging Large Language Models for Topic Refinement [7.6115889231452964]
トピックリファインメント(Topic Refinement)と呼ばれる新しいアプローチを導入する。
このアプローチは、トピックの初期のモデリングに直接関係せず、採掘後にトピックを改善することに重点を置いています。
素早いエンジニアリングを駆使して、所与のトピック内での話題外単語を排除し、文脈的に関係のある単語だけが、よりセマンティックに適合した単語で保存または置換されることを保証する。
論文 参考訳(メタデータ) (2024-03-26T13:50:34Z) - Large Language Models Offer an Alternative to the Traditional Approach of Topic Modelling [0.9095496510579351]
広範テキストコーパス内の話題を明らかにする代替手段として,大規模言語モデル (LLM) の未解決の可能性について検討する。
本研究は, 適切なプロンプトを持つLCMが, トピックのタイトルを生成でき, トピックを洗練, マージするためのガイドラインに固執する上で, 有効な代替手段として目立たせることを示唆している。
論文 参考訳(メタデータ) (2024-03-24T17:39:51Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
潜在拡散モデル(LDM)は、文脈内セグメンテーションに有効な最小限のモデルである。
画像とビデオの両方のデータセットを含む、新しい、公正なコンテキスト内セグメンテーションベンチマークを構築します。
論文 参考訳(メタデータ) (2024-03-14T17:52:31Z) - Knowledge-Aware Bayesian Deep Topic Model [50.58975785318575]
本稿では,事前知識を階層型トピックモデリングに組み込むベイズ生成モデルを提案する。
提案モデルでは,事前知識を効率的に統合し,階層的なトピック発見と文書表現の両面を改善する。
論文 参考訳(メタデータ) (2022-09-20T09:16:05Z) - Topic Discovery via Latent Space Clustering of Pretrained Language Model
Representations [35.74225306947918]
本研究では, PLM 埋め込みを基盤とした空間学習とクラスタリングの連携フレームワークを提案する。
提案モデルでは,トピック発見のためにPLMがもたらす強力な表現力と言語的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2022-02-09T17:26:08Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
文法に基づく意味解析を行い,その上に典型的な文脈モデリング手法を適用する。
我々は,2つの大きなクロスドメインデータセットに対して,13のコンテキストモデリング手法を評価した。
論文 参考訳(メタデータ) (2020-02-03T11:28:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。