論文の概要: Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries
- arxiv url: http://arxiv.org/abs/2409.15645v1
- Date: Tue, 24 Sep 2024 01:17:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 11:32:56.006661
- Title: Quantum Machine Learning in Drug Discovery: Applications in Academia and Pharmaceutical Industries
- Title(参考訳): 医薬品発見における量子機械学習 : アカデミアと製薬業界への応用
- Authors: Anthony M. Smaldone, Yu Shee, Gregory W. Kyro, Chuzhi Xu, Nam P. Vu, Rishab Dutta, Marwa H. Farag, Alexey Galda, Sandeep Kumar, Elica Kyoseva, Victor S. Batista,
- Abstract要約: 量子コンピューティングと機械学習 - 量子機械学習 - のネクサスは、化学の大幅な進歩の可能性を秘めている。
本稿では, 薬物発見の文脈において, ゲート型量子コンピュータにおける量子ニューラルネットワークの可能性について検討する。
- 参考スコア(独自算出の注目度): 1.8195318084816288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The nexus of quantum computing and machine learning - quantum machine learning - offers the potential for significant advancements in chemistry. This review specifically explores the potential of quantum neural networks on gate-based quantum computers within the context of drug discovery. We discuss the theoretical foundations of quantum machine learning, including data encoding, variational quantum circuits, and hybrid quantum-classical approaches. Applications to drug discovery are highlighted, including molecular property prediction and molecular generation. We provide a balanced perspective, emphasizing both the potential benefits and the challenges that must be addressed.
- Abstract(参考訳): 量子コンピューティングと機械学習 - 量子機械学習 - のネクサスは、化学の大幅な進歩の可能性を秘めている。
本稿では, 薬物発見の文脈において, ゲート型量子コンピュータにおける量子ニューラルネットワークの可能性について検討する。
本稿では,データ符号化,変分量子回路,ハイブリッド量子古典的アプローチなど,量子機械学習の理論的基礎について論じる。
分子特性予測や分子生成など、薬物発見への応用が強調されている。
私たちはバランスのとれた視点を提供し、潜在的なメリットと対処すべき課題の両方を強調します。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
量子貯水池コンピューティング(Quantum reservoir computing)は、時間的機械学習のように、量子システム上で複雑でリッチなダイナミクスを使用するアプローチである。
これらの量子機械学習アプローチはすべて、実験的に実現可能であり、最先端の量子デバイスに有効である。
論文 参考訳(メタデータ) (2020-11-10T04:45:52Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
量子機械学習は、量子技術の中でエキサイティングで有望なパラダイムとして登場した。
本稿では,これらのトピックについて概観し,科学コミュニティが実施した関連研究について述べる。
論文 参考訳(メタデータ) (2020-04-25T07:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。