論文の概要: Language-based Audio Moment Retrieval
- arxiv url: http://arxiv.org/abs/2409.15672v1
- Date: Tue, 24 Sep 2024 02:24:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 11:19:39.667070
- Title: Language-based Audio Moment Retrieval
- Title(参考訳): 言語に基づくモーメント検索
- Authors: Hokuto Munakata, Taichi Nishimura, Shota Nakada, Tatsuya Komatsu,
- Abstract要約: 音声モーメント検索(AMR)と呼ばれる新しいタスクを提案し設計する。
従来の言語ベースの音声検索タスクとは異なり、AMRはテキストクエリに基づいて、未編集の長い音声の関連モーメントを予測することを目的としている。
我々は、モーメントアノテーションを付加した大規模なシミュレーションオーディオ録音からなる専用のデータセット、Clatho-Momentを構築した。
次に、AMRタスクの基本的なフレームワークとして、Audio Moment DETR (AM-DETR) と呼ばれるDETRベースのモデルを提案する。
- 参考スコア(独自算出の注目度): 14.227865973426843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose and design a new task called audio moment retrieval (AMR). Unlike conventional language-based audio retrieval tasks that search for short audio clips from an audio database, AMR aims to predict relevant moments in untrimmed long audio based on a text query. Given the lack of prior work in AMR, we first build a dedicated dataset, Clotho-Moment, consisting of large-scale simulated audio recordings with moment annotations. We then propose a DETR-based model, named Audio Moment DETR (AM-DETR), as a fundamental framework for AMR tasks. This model captures temporal dependencies within audio features, inspired by similar video moment retrieval tasks, thus surpassing conventional clip-level audio retrieval methods. Additionally, we provide manually annotated datasets to properly measure the effectiveness and robustness of our methods on real data. Experimental results show that AM-DETR, trained with Clotho-Moment, outperforms a baseline model that applies a clip-level audio retrieval method with a sliding window on all metrics, particularly improving Recall1@0.7 by 9.00 points. Our datasets and code are publicly available in https://h-munakata.github.io/Language-based-Audio-Moment-Retrieval.
- Abstract(参考訳): 本稿では,音声モーメント検索(AMR)と呼ばれる新しいタスクを提案し,設計する。
音声データベースから短い音声クリップを検索する従来の言語ベースの音声検索タスクとは異なり、AMRはテキストクエリに基づいて、未編集の長い音声の関連モーメントを予測することを目的としている。
AMRにおける事前の作業の欠如を踏まえて、私たちはまず、モーメントアノテーションを備えた大規模なシミュレートされたオーディオ記録からなる専用のデータセットであるClatho-Momentを構築しました。
次に、AMRタスクの基本的なフレームワークとして、Audio Moment DETR (AM-DETR) と呼ばれるDETRベースのモデルを提案する。
このモデルは、類似のビデオモーメント検索タスクにインスパイアされた、音声機能内の時間的依存関係をキャプチャし、従来のクリップレベルの音声検索手法を超越する。
さらに,本手法の有効性とロバスト性を実データ上で適切に測定するために,手動でアノテートしたデータセットを提供する。
実験結果から,Clotho-MomentでトレーニングしたAM-DETRは,すべてのメトリクスにスライディングウィンドウを備えたクリップレベルの音声検索手法を適用したベースラインモデルよりも優れており,特にRecall1@0.7が9.00ポイント向上していることがわかった。
データセットとコードはhttps://h-munakata.github.io/Language-based-Audio-Moment-Retrievalで公開されています。
関連論文リスト
- Audio-Agent: Leveraging LLMs For Audio Generation, Editing and Composition [72.22243595269389]
本稿では,テキストやビデオの入力に基づく音声生成,編集,合成のためのフレームワークであるAudio-Agentを紹介する。
VTA(Video-to-audio)タスクでは、既存のほとんどの手法では、ビデオイベントと生成されたオーディオを同期させるタイムスタンプ検出器のトレーニングが必要である。
論文 参考訳(メタデータ) (2024-10-04T11:40:53Z) - Beyond Single-Audio: Advancing Multi-Audio Processing in Audio Large Language Models [56.776580717999806]
現実世界のアプリケーションは、複数のオーディオストリームを同時に処理することが多い。
11のマルチオーディオタスクから20のデータセットからなる最初のマルチオーディオ評価ベンチマークを提案する。
本稿では,複数の類似した音声間の音声コンテキストをキャプチャするマルチオーディオLLM(MALLM)を提案する。
論文 参考訳(メタデータ) (2024-09-27T12:06:53Z) - Enhancing Temporal Understanding in Audio Question Answering for Large Audio Language Models [0.9285295512807729]
大規模音声言語モデルの出現により,音声質問応答が注目されている。
LALMは一般的な音声理解では優れているが、時間的推論では限られている。
本稿では,音声時間的推論におけるこれらの課題と限界について述べる。
論文 参考訳(メタデータ) (2024-09-10T05:26:53Z) - AudioSetMix: Enhancing Audio-Language Datasets with LLM-Assisted Augmentations [1.2101820447447276]
近年,音声言語領域におけるマルチモーダル学習は大きな進歩を遂げている。
しかし、音声学習は、画像言語タスクと比較して、限られたデータや低品質のデータによって困難に直面している。
本手法は,音声クリップを自然言語ラベルと対応する音声信号処理操作で拡張することにより,音声キャプチャペアを体系的に生成する。
このスケーラブルな方法は、テキストおよびオーディオ関連モデルの高品質なトレーニングデータセットであるAudioSetMixを生成する。
論文 参考訳(メタデータ) (2024-05-17T21:08:58Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
高品質なキャプションを持つ音声データセットを構築するための,革新的で自動的なアプローチを提案する。
具体的には、150万以上のオーディオテキストペアからなる、大規模で高品質なオーディオ言語データセットをAuto-ACDとして構築する。
我々はLLMを用いて,抽出したマルチモーダルな手がかりによって導かれる,各音声の連接キャプションを言い換える。
論文 参考訳(メタデータ) (2023-09-20T17:59:32Z) - Retrieval-Augmented Text-to-Audio Generation [36.328134891428085]
本稿では,AudioLDMのような最先端モデルが,その世代性能に偏っていることを示す。
本稿では,TTAモデルに対する単純な検索拡張手法を提案する。
Re-AudioLDMは、複雑なシーン、稀なオーディオクラス、さらには目に見えないオーディオタイプに対して、現実的なオーディオを生成することができる。
論文 参考訳(メタデータ) (2023-09-14T22:35:39Z) - Text-to-feature diffusion for audio-visual few-shot learning [59.45164042078649]
ビデオデータから学ぶことは難しいし、あまり研究されていないが、もっと安いセットアップだ。
3つのデータセットに対して,音声・視覚的数ショット映像分類ベンチマークを導入する。
AV-DIFFは,提案した音声・視覚的少数ショット学習のベンチマークにおいて,最先端の性能が得られることを示す。
論文 参考訳(メタデータ) (2023-09-07T17:30:36Z) - Separate Anything You Describe [55.0784713558149]
言語クエリオーディオソース分離(LASS)は,CASA(Computer auditory scene analysis)の新しいパラダイムである
AudioSepは、自然言語クエリによるオープンドメインオーディオソース分離の基礎モデルである。
論文 参考訳(メタデータ) (2023-08-09T16:09:44Z) - Automated Audio Captioning and Language-Based Audio Retrieval [3.9065205774219334]
このプロジェクトには2つのサブタスクがあった: 自動音声キャプションと言語ベースの音声検索である。
両方のサブタスクで、Clathoデータセットが使用された。
BLEU1, BLEU2, BLEU3, ROUGEL, METEOR, CIDEr, SPICE, SPIDEr の音声キャプション, R1, R5, R10, mARP10 の音声検索における評価を行った。
論文 参考訳(メタデータ) (2022-07-08T23:48:52Z) - Audio-text Retrieval in Context [24.38055340045366]
そこで本研究では,音声・テキストのアライメントを改善するために,複数のオーディオ機能とシーケンスアグリゲーション手法について検討する。
我々は,事前学習した音声特徴と記述子に基づくアグリゲーション法を用いた文脈音声テキスト検索システムを構築した。
提案システムでは、リコール、中央値、平均値を含むすべての指標において、双方向音声テキスト検索において顕著な改善が達成されている。
論文 参考訳(メタデータ) (2022-03-25T13:41:17Z) - Audio-Visual Synchronisation in the wild [149.84890978170174]
我々は,VGG-Sound Syncという,高い音声・視覚相関を持つテストセットを同定し,キュレートする。
任意の長さの音響信号と視覚信号のモデル化に特化して設計された,トランスフォーマーに基づく多数のアーキテクチャ変種を比較した。
我々は,新しいVGG-Sound Syncビデオデータセットにおいて,160以上の多様なクラスと一般的な音声-視覚同期のための最初のベンチマークを設定した。
論文 参考訳(メタデータ) (2021-12-08T17:50:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。