A Survey of Stance Detection on Social Media: New Directions and Perspectives
- URL: http://arxiv.org/abs/2409.15690v1
- Date: Tue, 24 Sep 2024 03:06:25 GMT
- Title: A Survey of Stance Detection on Social Media: New Directions and Perspectives
- Authors: Bowen Zhang, Genan Dai, Fuqiang Niu, Nan Yin, Xiaomao Fan, Hu Huang,
- Abstract summary: stance detection has emerged as a crucial subfield within affective computing.
Recent years have seen a surge of research interest in developing effective stance detection methods.
This paper provides a comprehensive survey of stance detection techniques on social media.
- Score: 3.9371318895313903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern digital environments, users frequently express opinions on contentious topics, providing a wealth of information on prevailing attitudes. The systematic analysis of these opinions offers valuable insights for decision-making in various sectors, including marketing and politics. As a result, stance detection has emerged as a crucial subfield within affective computing, enabling the automatic detection of user stances in social media conversations and providing a nuanced understanding of public sentiment on complex issues. Recent years have seen a surge of research interest in developing effective stance detection methods, with contributions from multiple communities, including natural language processing, web science, and social computing. This paper provides a comprehensive survey of stance detection techniques on social media, covering task definitions, datasets, approaches, and future works. We review traditional stance detection models, as well as state-of-the-art methods based on large language models, and discuss their strengths and limitations. Our survey highlights the importance of stance detection in understanding public opinion and sentiment, and identifies gaps in current research. We conclude by outlining potential future directions for stance detection on social media, including the need for more robust and generalizable models, and the importance of addressing emerging challenges such as multi-modal stance detection and stance detection in low-resource languages.
Related papers
- Multimodal Multi-turn Conversation Stance Detection: A Challenge Dataset and Effective Model [9.413870182630362]
We introduce a new multimodal multi-turn conversational stance detection dataset (called MmMtCSD)
We propose a novel multimodal large language model stance detection framework (MLLM-SD), that learns joint stance representations from textual and visual modalities.
Experiments on MmMtCSD show state-of-the-art performance of our proposed MLLM-SD approach for multimodal stance detection.
arXiv Detail & Related papers (2024-09-01T03:16:30Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Recent Advances in Hate Speech Moderation: Multimodality and the Role of Large Models [52.24001776263608]
This comprehensive survey delves into the recent strides in HS moderation.
We highlight the burgeoning role of large language models (LLMs) and large multimodal models (LMMs)
We identify existing gaps in research, particularly in the context of underrepresented languages and cultures.
arXiv Detail & Related papers (2024-01-30T03:51:44Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Multi-modal Misinformation Detection: Approaches, Challenges and Opportunities [5.4482836906033585]
Social media platforms are evolving from text-based forums into multi-modal environments.
Misinformation spreaders have recently targeted contextual connections between the modalities e.g., text and image.
We analyze, categorize and identify existing approaches in addition to challenges and shortcomings they face in order to unearth new research opportunities in the field of multi-modal misinformation detection.
arXiv Detail & Related papers (2022-03-25T19:45:33Z) - Capturing Stance Dynamics in Social Media: Open Challenges and Research
Directions [6.531659195805749]
Social media platforms provide a goldmine for mining public opinion on issues of wide societal interest.
Opinion mining is a problem that can be operationalised by capturing and aggregating the stance of individual social media posts.
We investigate the intersection between computational linguistics and the temporal evolution of human communication in digital media.
arXiv Detail & Related papers (2021-09-01T16:28:24Z) - Encoding Heterogeneous Social and Political Context for Entity Stance
Prediction [7.477393857078695]
We propose the novel task of entity stance prediction.
We retrieve facts from Wikipedia about social entities regarding contemporary U.S. politics.
We then annotate social entities' stances towards political ideologies with the help of domain experts.
arXiv Detail & Related papers (2021-08-09T08:59:43Z) - Survey on the Analysis and Modeling of Visual Kinship: A Decade in the
Making [66.72253432908693]
Kinship recognition is a challenging problem with many practical applications.
We review the public resources and data challenges that enabled and inspired many to hone-in on the views.
For the tenth anniversary, the demo code is provided for the various kin-based tasks.
arXiv Detail & Related papers (2020-06-29T13:25:45Z) - Stance Detection on Social Media: State of the Art and Trends [5.584060970507506]
Stance detection on social media is an emerging opinion mining paradigm for various social and political applications in which sentiment analysis may be sub-optimal.
This paper surveys the work on stance detection within those communities and situates its usage within current opinion mining techniques in social media.
It presents an exhaustive review of stance detection techniques on social media, including the task definition, different types of targets in stance detection, features set used, and various machine learning approaches applied.
arXiv Detail & Related papers (2020-06-05T19:24:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
We present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition.
We first introduce the multi-modality of the sensory data and provide information for public datasets.
We then propose a new taxonomy to structure the deep methods by challenges.
arXiv Detail & Related papers (2020-01-21T09:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.