dnaGrinder: a lightweight and high-capacity genomic foundation model
- URL: http://arxiv.org/abs/2409.15697v1
- Date: Tue, 24 Sep 2024 03:20:07 GMT
- Title: dnaGrinder: a lightweight and high-capacity genomic foundation model
- Authors: Qihang Zhao, Chi Zhang, Weixiong Zhang,
- Abstract summary: Current genomic foundation models often face a critical tradeoff: smaller models with mediocre performance versus large models with improved performance.
We introduce dnaGrinder, a unique and efficient genomic foundation model.
dnaGrinder excels at managing long-range dependencies within genomic sequences while minimizing computational costs without compromising performance.
- Score: 11.646351318648499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of understanding and interpreting the complex information encoded within genomic sequences remains a grand challenge in biological research and clinical applications. In this context, recent advancements in large language model research have led to the development of both encoder-only and decoder-only foundation models designed to decode intricate information in DNA sequences. However, several issues persist, particularly regarding the efficient management of long-range dependencies inherent in genomic sequences, the effective representation of nucleotide variations, and the considerable computational costs associated with large model architectures and extensive pretraining datasets. Current genomic foundation models often face a critical tradeoff: smaller models with mediocre performance versus large models with improved performance. To address these challenges, we introduce dnaGrinder, a unique and efficient genomic foundation model. dnaGrinder excels at managing long-range dependencies within genomic sequences while minimizing computational costs without compromising performance. It achieves results that are not just comparable but often superior to leading DNA models such as Nucleotide Transformer and DNABERT-2. Furthermore, dnaGrinder is designed for easy fine-tuning on workstation-grade GPUs, accommodating input lengths exceeding 17,000 tokens. On a single high-performance GPU, it supports sequences longer than 140,000 tokens, making it a highly efficient and accessible tool for both basic biological research and clinical applications.
Related papers
- CanvOI, an Oncology Intelligence Foundation Model: Scaling FLOPS Differently [0.0]
We present CanvOI, a ViT-g/10-based foundation model designed to enhance the capabilities of digital pathology.
By introducing larger tile sizes (380 x 380 pixels) and smaller patch sizes (10 x 10 pixels), we were able to optimize the model's performance.
arXiv Detail & Related papers (2024-09-04T17:15:44Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Efficient and Scalable Fine-Tune of Language Models for Genome
Understanding [49.606093223945734]
We present textscLingo: textscLanguage prefix ftextscIne-tuning for textscGentextscOmes.
Unlike DNA foundation models, textscLingo strategically leverages natural language foundation models' contextual cues.
textscLingo further accommodates numerous downstream fine-tune tasks by an adaptive rank sampling method.
arXiv Detail & Related papers (2024-02-12T21:40:45Z) - BEND: Benchmarking DNA Language Models on biologically meaningful tasks [7.005668635562045]
We introduce BEND, a Benchmark for DNA language models, featuring a collection of realistic and biologically meaningful downstream tasks.
We find that embeddings from current DNA LMs can approach performance of expert methods on some tasks, but only capture limited information about long-range features.
arXiv Detail & Related papers (2023-11-21T12:34:00Z) - DNAGPT: A Generalized Pre-trained Tool for Versatile DNA Sequence
Analysis Tasks [14.931476374660944]
DNAGPT is a generalized DNA pre-training model trained on over 200 billion base pairs from all mammals.
By enhancing the classic GPT model with a binary classification task, a numerical regression task, and a comprehensive token language, DNAGPT can handle versatile DNA analysis tasks.
arXiv Detail & Related papers (2023-07-11T06:30:43Z) - HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide
Resolution [76.97231739317259]
We present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level.
On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 18 datasets using a model with orders of magnitude less parameters and pretraining data.
arXiv Detail & Related papers (2023-06-27T20:46:34Z) - DNABERT-2: Efficient Foundation Model and Benchmark For Multi-Species Genome [10.051595222470304]
We argue that the computation and sample inefficiencies introduced by k-mer tokenization are primary obstacles in developing large genome foundational models.
We provide conceptual and empirical insights into genome tokenization, building on which we propose to replace k-mer tokenization with Byte Pair$.
We introduce DNABERT-2, a refined genome foundation model that adapts an efficient tokenizer and employs multiple strategies to overcome input length constraints.
arXiv Detail & Related papers (2023-06-26T18:43:46Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGAN is a model with two central innovations.
A $beta$-variational autoencoder is incorporated into a hybrid GAN architecture.
A custom differentiable data augmentation scheme is developed specifically for this architecture.
arXiv Detail & Related papers (2023-02-17T08:49:09Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
We propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSC$ell_4$Net.
arXiv Detail & Related papers (2021-03-22T05:19:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.