Autotuning Bipedal Locomotion MPC with GRFM-Net for Efficient Sim-to-Real Transfer
- URL: http://arxiv.org/abs/2409.15710v1
- Date: Tue, 24 Sep 2024 03:58:18 GMT
- Title: Autotuning Bipedal Locomotion MPC with GRFM-Net for Efficient Sim-to-Real Transfer
- Authors: Qianzhong Chen, Junheng Li, Sheng Cheng, Naira Hovakimyan, Quan Nguyen,
- Abstract summary: We address the challenges of parameter selection in bipedal locomotion control using DiffTune.
A major difficulty lies in balancing model fidelity with differentiability.
We validate the parameters learned by DiffTune with GRFM-Net in hardware experiments.
- Score: 10.52309107195141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bipedal locomotion control is essential for humanoid robots to navigate complex, human-centric environments. While optimization-based control designs are popular for integrating sophisticated models of humanoid robots, they often require labor-intensive manual tuning. In this work, we address the challenges of parameter selection in bipedal locomotion control using DiffTune, a model-based autotuning method that leverages differential programming for efficient parameter learning. A major difficulty lies in balancing model fidelity with differentiability. We address this difficulty using a low-fidelity model for differentiability, enhanced by a Ground Reaction Force-and-Moment Network (GRFM-Net) to capture discrepancies between MPC commands and actual control effects. We validate the parameters learned by DiffTune with GRFM-Net in hardware experiments, which demonstrates the parameters' optimality in a multi-objective setting compared with baseline parameters, reducing the total loss by up to 40.5$\%$ compared with the expert-tuned parameters. The results confirm the GRFM-Net's effectiveness in mitigating the sim-to-real gap, improving the transferability of simulation-learned parameters to real hardware.
Related papers
- Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
We study how this can be achieved by a combination of model-predictive and predictive reinforcement learning controllers.
In this work, we combine both control methods to address the quadrupedal robot stable gate generation problem.
arXiv Detail & Related papers (2023-07-15T09:22:37Z) - Tuning Legged Locomotion Controllers via Safe Bayesian Optimization [47.87675010450171]
This paper presents a data-driven strategy to streamline the deployment of model-based controllers in legged robotic hardware platforms.
We leverage a model-free safe learning algorithm to automate the tuning of control gains, addressing the mismatch between the simplified model used in the control formulation and the real system.
arXiv Detail & Related papers (2023-06-12T13:10:14Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Hyper-Parameter Auto-Tuning for Sparse Bayesian Learning [72.83293818245978]
We design and learn a neural network (NN)-based auto-tuner for hyper- parameter tuning in sparse Bayesian learning.
We show that considerable improvement in convergence rate and recovery performance can be achieved.
arXiv Detail & Related papers (2022-11-09T12:34:59Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
We propose an adaptive MPC variant that automatically estimates control and model parameters.
We leverage recent results showing that BO can be formulated as a density ratio estimation.
This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks.
arXiv Detail & Related papers (2022-03-13T23:22:12Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
We propose a multi-domain control parameter learning framework for locomotion control of bipedal robots.
We leverage BO to learn the control parameters used in the HZD-based controller.
Next, the learning process is applied on the physical robot to learn for corrections to the control parameters learned in simulation.
arXiv Detail & Related papers (2022-03-04T20:48:17Z) - An Artificial Neural Network-Based Model Predictive Control for
Three-phase Flying Capacitor Multi-Level Inverter [2.3513645401551333]
Model predictive control (MPC) has been used widely in power electronics due to its simple concept, fast dynamic response, and good reference tracking.
It suffers from parametric uncertainties, since it relies on the mathematical model of the system to predict the optimal switching states.
This paper offers a model-free control strategy on the basis of artificial neural networks (ANNs)
arXiv Detail & Related papers (2021-10-15T13:54:08Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
Operational Space Control (OSC) has been used as an effective task-space controller for manipulation.
We propose OSC for Adaptation and Robustness (OSCAR), a data-driven variant of OSC that compensates for modeling errors.
We evaluate our method on a variety of simulated manipulation problems, and find substantial improvements over an array of controller baselines.
arXiv Detail & Related papers (2021-10-02T01:21:38Z) - Edge Federated Learning Via Unit-Modulus Over-The-Air Computation
(Extended Version) [64.76619508293966]
This paper proposes a unit-modulus over-the-air computation (UM-AirComp) framework to facilitate efficient edge federated learning.
It uploads simultaneously local model parameters and updates global model parameters via analog beamforming.
We demonstrate the implementation of UM-AirComp in a vehicle-to-everything autonomous driving simulation platform.
arXiv Detail & Related papers (2021-01-28T15:10:22Z) - A Learning-Based Tune-Free Control Framework for Large Scale Autonomous
Driving System Deployment [5.296964852594282]
The framework consists of three machine-learning-based procedures, which jointly automate the control parameter tuning for autonomous driving.
The paper shows an improvement in control performance with a significant increase in parameter tuning efficiency, in both simulation and road tests.
arXiv Detail & Related papers (2020-11-09T08:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.