Sequential Learning in the Dense Associative Memory
- URL: http://arxiv.org/abs/2409.15729v1
- Date: Tue, 24 Sep 2024 04:23:00 GMT
- Title: Sequential Learning in the Dense Associative Memory
- Authors: Hayden McAlister, Anthony Robins, Lech Szymanski,
- Abstract summary: We investigate the performance of the Dense Associative Memory in sequential learning problems.
We show that existing sequential learning methods can be applied to the Dense Associative Memory to improve sequential learning performance.
- Score: 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential learning involves learning tasks in a sequence, and proves challenging for most neural networks. Biological neural networks regularly conquer the sequential learning challenge and are even capable of transferring knowledge both forward and backwards between tasks. Artificial neural networks often totally fail to transfer performance between tasks, and regularly suffer from degraded performance or catastrophic forgetting on previous tasks. Models of associative memory have been used to investigate the discrepancy between biological and artificial neural networks due to their biological ties and inspirations, of which the Hopfield network is perhaps the most studied model. The Dense Associative Memory, or modern Hopfield network, generalizes the Hopfield network, allowing for greater capacities and prototype learning behaviors, while still retaining the associative memory structure. We investigate the performance of the Dense Associative Memory in sequential learning problems, and benchmark various sequential learning techniques in the network. We give a substantial review of the sequential learning space with particular respect to the Hopfield network and associative memories, as well as describe the techniques we implement in detail. We also draw parallels between the classical and Dense Associative Memory in the context of sequential learning, and discuss the departures from biological inspiration that may influence the utility of the Dense Associative Memory as a tool for studying biological neural networks. We present our findings, and show that existing sequential learning methods can be applied to the Dense Associative Memory to improve sequential learning performance.
Related papers
- Semi-parametric Memory Consolidation: Towards Brain-like Deep Continual Learning [59.35015431695172]
We propose a novel biomimetic continual learning framework that integrates semi-parametric memory and the wake-sleep consolidation mechanism.
For the first time, our method enables deep neural networks to retain high performance on novel tasks while maintaining prior knowledge in real-world challenging continual learning scenarios.
arXiv Detail & Related papers (2025-04-20T19:53:13Z) - Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Memory Networks: Towards Fully Biologically Plausible Learning [2.7013801448234367]
Current artificial neural networks rely on techniques like backpropagation and weight sharing, which do not align with the brain's natural information processing methods.
We propose the Memory Network, a model inspired by biological principles that avoids backpropagation and convolutions, and operates in a single pass.
arXiv Detail & Related papers (2024-09-18T06:01:35Z) - Spiking representation learning for associative memories [0.0]
We introduce a novel artificial spiking neural network (SNN) that performs unsupervised representation learning and associative memory operations.
The architecture of our model derives from the neocortical columnar organization and combines feedforward projections for learning hidden representations and recurrent projections for forming associative memories.
arXiv Detail & Related papers (2024-06-05T08:30:11Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - ELiSe: Efficient Learning of Sequences in Structured Recurrent Networks [1.5931140598271163]
We build a model for efficient learning sequences using only local always-on and phase-free plasticity.
We showcase the capabilities of ELiSe in a mock-up of birdsong learning, and demonstrate its flexibility with respect to parametrization.
arXiv Detail & Related papers (2024-02-26T17:30:34Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - In search of dispersed memories: Generative diffusion models are
associative memory networks [6.4322891559626125]
Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks.
We show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is identical to that of modern Hopfield networks.
This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network.
arXiv Detail & Related papers (2023-09-29T14:48:24Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
We show that the diversity in the activation patterns of different neurons is reflective of model generalization and memorization.
Importantly, we discover that information organization points to the two forms of memorization, even for neural activations computed on unlabelled in-distribution examples.
arXiv Detail & Related papers (2022-10-17T20:15:24Z) - Synergistic information supports modality integration and flexible
learning in neural networks solving multiple tasks [107.8565143456161]
We investigate the information processing strategies adopted by simple artificial neural networks performing a variety of cognitive tasks.
Results show that synergy increases as neural networks learn multiple diverse tasks.
randomly turning off neurons during training through dropout increases network redundancy, corresponding to an increase in robustness.
arXiv Detail & Related papers (2022-10-06T15:36:27Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Biological learning in key-value memory networks [0.45880283710344055]
Memory-augmented neural networks in machine learning commonly use a key-value mechanism to store and read out memories in a single step.
We propose an implementation of basic key-value memory that stores inputs using a combination of biologically plausible three-factor plasticity rules.
Our results suggest a compelling alternative to the classical Hopfield network as a model of biological long-term memory.
arXiv Detail & Related papers (2021-10-26T19:26:53Z) - Learning offline: memory replay in biological and artificial
reinforcement learning [1.0136215038345011]
We review the functional roles of replay in the fields of neuroscience and AI.
Replay is important for memory consolidation in biological neural networks.
It is also key to stabilising learning in deep neural networks.
arXiv Detail & Related papers (2021-09-21T08:57:19Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
We use connections between deep neural networks and differential equations to design a family of deep network architectures for representing contact dynamics between objects.
We show that these networks can learn discontinuous contact events in a data-efficient manner from noisy observations.
Our results indicate that an idealised form of touch feedback is a key component of making this learning problem tractable.
arXiv Detail & Related papers (2021-02-22T17:33:51Z) - Unsupervised Transfer Learning for Spatiotemporal Predictive Networks [90.67309545798224]
We study how to transfer knowledge from a zoo of unsupervisedly learned models towards another network.
Our motivation is that models are expected to understand complex dynamics from different sources.
Our approach yields significant improvements on three benchmarks fortemporal prediction, and benefits the target even from less relevant ones.
arXiv Detail & Related papers (2020-09-24T15:40:55Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
Differentiable neural computers extend artificial neural networks with an explicit memory without interference.
We achieve some of the computational capabilities of differentiable neural computers with a model that can be trained very efficiently.
arXiv Detail & Related papers (2020-09-14T12:01:30Z) - Triple Memory Networks: a Brain-Inspired Method for Continual Learning [35.40452724755021]
A neural network adjusts its parameters when learning a new task, but then fails to conduct the old tasks well.
The brain has a powerful ability to continually learn new experience without catastrophic interference.
Inspired by such brain strategy, we propose a novel approach named triple memory networks (TMNs) for continual learning.
arXiv Detail & Related papers (2020-03-06T11:35:24Z) - Encoding-based Memory Modules for Recurrent Neural Networks [79.42778415729475]
We study the memorization subtask from the point of view of the design and training of recurrent neural networks.
We propose a new model, the Linear Memory Network, which features an encoding-based memorization component built with a linear autoencoder for sequences.
arXiv Detail & Related papers (2020-01-31T11:14:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.