EvoFA: Evolvable Fast Adaptation for EEG Emotion Recognition
- URL: http://arxiv.org/abs/2409.15733v1
- Date: Tue, 24 Sep 2024 04:35:10 GMT
- Title: EvoFA: Evolvable Fast Adaptation for EEG Emotion Recognition
- Authors: Ming Jin, Danni Zhang, Gangming Zhao, Changde Du, Jinpeng Li,
- Abstract summary: This paper proposes Evolvable Fast Adaptation (EvoFA), an online adaptive framework tailored for EEG data.
EvoFA integrates the rapid adaptation of Few-Shot Learning (FSL) and the distribution matching of Domain Adaptation (DA) through a two-stage generalization process.
In the testing phase, a designed evolvable meta-adaptation module iteratively aligns the marginal distribution of target (testing) data with the evolving source (training) data.
- Score: 17.29489055612668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG)-based emotion recognition has gained significant traction due to its accuracy and objectivity. However, the non-stationary nature of EEG signals leads to distribution drift over time, causing severe performance degradation when the model is reused. While numerous domain adaptation (DA) approaches have been proposed in recent years to address this issue, their reliance on large amounts of target data for calibration restricts them to offline scenarios, rendering them unsuitable for real-time applications. To address this challenge, this paper proposes Evolvable Fast Adaptation (EvoFA), an online adaptive framework tailored for EEG data. EvoFA organically integrates the rapid adaptation of Few-Shot Learning (FSL) and the distribution matching of Domain Adaptation (DA) through a two-stage generalization process. During the training phase, a robust base meta-learning model is constructed for strong generalization. In the testing phase, a designed evolvable meta-adaptation module iteratively aligns the marginal distribution of target (testing) data with the evolving source (training) data within a model-agnostic meta-learning framework, enabling the model to learn the evolving trends of testing data relative to training data and improving online testing performance. Experimental results demonstrate that EvoFA achieves significant improvements compared to the basic FSL method and previous online methods. The introduction of EvoFA paves the way for broader adoption of EEG-based emotion recognition in real-world applications. Our code will be released upon publication.
Related papers
- SPEED: Scalable Preprocessing of EEG Data for Self-Supervised Learning [2.705542761685457]
We propose a Python-based EEG preprocessing pipeline optimized for self-supervised learning.
This optimization stabilizes self-supervised training and enhances performance on downstream tasks.
arXiv Detail & Related papers (2024-08-15T10:15:01Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts.
We propose a test-time Forward-Optimization Adaptation (FOA) method.
FOA runs on quantized 8-bit ViT, outperforms gradient-based TENT on full-precision 32-bit ViT, and achieves an up to 24-fold memory reduction on ImageNet-C.
arXiv Detail & Related papers (2024-04-02T05:34:33Z) - Evolving Domain Adaptation of Pretrained Language Models for Text
Classification [24.795214770636534]
Adapting pre-trained language models (PLMs) for time-series text classification amidst evolving domain shifts (EDS) is critical for maintaining accuracy in applications like stance detection.
This study benchmarks the effectiveness of evolving domain adaptation (EDA) strategies, notably self-training, domain-adversarial training, and domain-adaptive pretraining, with a focus on an incremental self-training method.
arXiv Detail & Related papers (2023-11-16T08:28:00Z) - Better Practices for Domain Adaptation [62.70267990659201]
Domain adaptation (DA) aims to provide frameworks for adapting models to deployment data without using labels.
Unclear validation protocol for DA has led to bad practices in the literature.
We show challenges across all three branches of domain adaptation methodology.
arXiv Detail & Related papers (2023-09-07T17:44:18Z) - Distributionally Robust Cross Subject EEG Decoding [15.211091130230589]
We propose a principled approach to perform dynamic evolution on the data for improvement of decoding robustness.
We derived a general data evolution framework based on Wasserstein gradient flow (WGF) and provides two different forms of evolution within the framework.
The proposed approach can be readily integrated with other data augmentation approaches for further improvements.
arXiv Detail & Related papers (2023-08-19T11:31:33Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Architecture, Dataset and Model-Scale Agnostic Data-free Meta-Learning [119.70303730341938]
We propose ePisode cUrriculum inveRsion (ECI) during data-free meta training and invErsion calibRation following inner loop (ICFIL) during meta testing.
ECI adaptively increases the difficulty level of pseudo episodes according to the real-time feedback of the meta model.
We formulate the optimization process of meta training with ECI as an adversarial form in an end-to-end manner.
arXiv Detail & Related papers (2023-03-20T15:10:41Z) - Towards physiology-informed data augmentation for EEG-based BCIs [24.15108821320151]
We suggest a novel technique for augmenting the training data by generating new data from the data set at hand.
In this manuscript, we explain the method and show first preliminary results for participant-independent motor-imagery classification.
arXiv Detail & Related papers (2022-03-27T20:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.