論文の概要: NER-Luxury: Named entity recognition for the fashion and luxury domain
- arxiv url: http://arxiv.org/abs/2409.15804v1
- Date: Tue, 24 Sep 2024 06:58:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 08:41:18.865279
- Title: NER-Luxury: Named entity recognition for the fashion and luxury domain
- Title(参考訳): NER-Luxury:ファッションと高級ドメインのエンティティ認識
- Authors: Akim Mousterou,
- Abstract要約: 我々は、ファッションと高級産業のための英語で匿名認識モデルを開発する際の課題に対処する。
豪華なアノテーションスキームを用いた36以上のエンティティ型の分類を導入し、明確な階層分類を考慮に入れた40K以上の文のデータセットを作成する。
ファッション,美容,時計,宝石,香料,化粧品,高級品の5種類の微調整モデルを紹介し,審美的側面と量的側面に等しく焦点を合わせている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we address multiple challenges of developing a named-entity recognition model in English for the fashion and luxury industry, namely the entity disambiguation, French technical jargon in multiple sub-sectors, scarcity of the ESG methodology, and a disparate company structures of the sector with small and medium-sized luxury houses to large conglomerate leveraging economy of scale. In this work, we introduce a taxonomy of 36+ entity types with a luxury-oriented annotation scheme, and create a dataset of more than 40K sentences respecting a clear hierarchical classification. We also present five supervised fine-tuned models NER-Luxury for fashion, beauty, watches, jewelry, fragrances, cosmetics, and overall luxury, focusing equally on the aesthetic side and the quantitative side. In an additional experiment, we compare in a quantitative empirical assessment of the NER performance of our models against the state-of-the-art open-source large language models that show promising results and highlights the benefits of incorporating a bespoke NER model in existing machine learning pipelines.
- Abstract(参考訳): 本研究では、ファッション・高級産業において、英語で名刺認識モデルを開発する上での課題、すなわち、複数のサブセクターにおけるフランスの技術ジャーゴン、ESG方法論の欠如、小規模・中規模の高級住宅を持つセクターの異種企業構造から、スケール経済を活用した大規模コングロマリットへの展開について述べる。
本研究では,36以上のエンティティ型の分類を高級指向のアノテーションスキームで導入し,明確な階層的分類を考慮に入れた40K以上の文のデータセットを作成する。
また, ファッション, 美容, 時計, 宝石, 香料, 化粧品, 高級品の5種類の微調整モデルを紹介し, 美的側面と量的側面に等しく焦点を合わせている。
追加実験では、既存の機械学習パイプラインにNERモデルを組み込むことの利点を強調し、有望な結果を示す最先端のオープンソース大規模言語モデルと比較し、我々のモデルのNER性能を定量的に評価する。
関連論文リスト
- Blocks as Probes: Dissecting Categorization Ability of Large Multimodal Models [31.47100708645748]
近年,LMM (Large Multimodal Models) の開発が進んでいる。
我々はComBoと呼ばれる複合ブロックをベースとした新しい、挑戦的で効率的なベンチマークを提案し、このベンチマークは不整合評価フレームワークを提供する。
LMMは、新しいカテゴリーを学習する際に許容できる一般化能力を示すが、多くの点で人間に比べてまだギャップがある。
論文 参考訳(メタデータ) (2024-09-03T02:55:36Z) - Prompting Encoder Models for Zero-Shot Classification: A Cross-Domain Study in Italian [75.94354349994576]
本稿では,より小型のドメイン固有エンコーダ LM と,特殊なコンテキストにおける性能向上手法の併用の可能性について検討する。
本研究は, イタリアの官僚的・法的言語に焦点をあて, 汎用モデルと事前学習型エンコーダのみのモデルの両方を実験する。
その結果, 事前学習したモデルでは, 一般知識の頑健性が低下する可能性があるが, ドメイン固有のタスクに対して, ゼロショット設定においても, より優れた適応性を示すことがわかった。
論文 参考訳(メタデータ) (2024-07-30T08:50:16Z) - A Survey on Mixture of Experts [11.801185267119298]
モデルキャパシティを最小限のオーバーヘッドでスケールアップする有効な方法として、専門家(MoE)の混在が現れた。
MoEは、最小限のオーバーヘッドでモデルキャパシティを実質的にスケールアップする効果的な方法として登場した。
この調査は、このギャップを埋めることを目指しており、MoEの複雑さを探求する研究者にとって不可欠なリソースとなっている。
論文 参考訳(メタデータ) (2024-06-26T16:34:33Z) - Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms [91.19304518033144]
検索システムにおける視覚モデルと人間の審美基準の整合を図る。
本研究では、視覚モデルと人間の美学をよりよく整合させるために、視覚モデルを微調整する嗜好に基づく強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T17:59:20Z) - One-Shot Open Affordance Learning with Foundation Models [54.15857111929812]
私たちは、モデルがベースオブジェクトカテゴリ毎に1つの例でトレーニングされる、ワンショットのオープンアフォーダンスラーニング(OOAL)を紹介します。
本稿では,視覚的特徴と手頃なテキスト埋め込みとの整合性を高める,シンプルで効果的な設計の視覚言語フレームワークを提案する。
2つのアベイランスセグメンテーションのベンチマーク実験により、提案手法はトレーニングデータの1%未満で最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-11-29T16:23:06Z) - MindLLM: Pre-training Lightweight Large Language Model from Scratch,
Evaluations and Domain Applications [46.337078949637345]
我々は、スクラッチから訓練されたバイリンガル軽量な大規模言語モデルの新しいシリーズであるMindLLMを紹介する。
大規模なモデル開発で得られた経験の詳細な説明が与えられ、プロセスのすべてのステップをカバーする。
MindLLMは、いくつかの公開ベンチマークにおいて、他のオープンソースの大規模モデルのパフォーマンスと一貫して一致または上回っている。
論文 参考訳(メタデータ) (2023-10-24T12:22:34Z) - Generative AI for Business Strategy: Using Foundation Models to Create
Business Strategy Tools [0.7784248206747153]
ビジネス意思決定における基礎モデルの利用を提案する。
私たちは、署名されたビジネスネットワークの出現という形で、ITアーティファクトを導き出します。
このようなアーティファクトは、市場の状態と自身のポジションについて、ビジネスステークホルダーに通知することができる。
論文 参考訳(メタデータ) (2023-08-27T19:03:12Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Look Who's Talking: Interpretable Machine Learning for Assessing Italian
SMEs Credit Default [0.0]
本稿では、モデル企業のデフォルト予測に対するモデルに依存しないアプローチに依存する。
2つの機械学習アルゴリズム(eXtreme Gradient BoostingとFeedForward Neural Network)を3つの標準判別モデルと比較する。
以上の結果から, イタリアの中小企業製造業は, eXtreme Gradient Boosting アルゴリズムにより, 総合的な分類能力の恩恵を受けていることが示唆された。
論文 参考訳(メタデータ) (2021-08-31T15:11:17Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
我々は深層ニューラルネットワークの研究を統一的な枠組みで行った。
私たちのフレームワークは、各モデルの誘導バイアスに関する洞察を提供します。
提案モデルの有効性を,標準画像および音声分類ベンチマークで評価した。
論文 参考訳(メタデータ) (2021-04-16T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。