Deep Learning Techniques for Automatic Lateral X-ray Cephalometric Landmark Detection: Is the Problem Solved?
- URL: http://arxiv.org/abs/2409.15834v1
- Date: Tue, 24 Sep 2024 08:03:13 GMT
- Title: Deep Learning Techniques for Automatic Lateral X-ray Cephalometric Landmark Detection: Is the Problem Solved?
- Authors: Hongyuan Zhang, Ching-Wei Wang, Hikam Muzakky, Juan Dai, Xuguang Li, Chenglong Ma, Qian Wu, Xianan Cui, Kunlun Xu, Pengfei He, Dongqian Guo, Xianlong Wang, Hyunseok Lee, Zhangnan Zhong, Zhu Zhu, Bingsheng Huang,
- Abstract summary: "Cephalometric Landmark Detection (CL-Detection)" dataset is the largest publicly available and comprehensive dataset for cephalometric landmark detection.
This paper measures how far state-of-the-art deep learning methods can go for cephalometric landmark detection.
- Score: 12.422216286751073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Localization of the craniofacial landmarks from lateral cephalograms is a fundamental task in cephalometric analysis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Cephalometric Landmark Detection (CL-Detection)" dataset, which is the largest publicly available and comprehensive dataset for cephalometric landmark detection. This multi-center and multi-vendor dataset includes 600 lateral X-ray images with 38 landmarks acquired with different equipment from three medical centers. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go for cephalometric landmark detection. Following the 2023 MICCAI CL-Detection Challenge, we report the results of the top ten research groups using deep learning methods. Results show that the best methods closely approximate the expert analysis, achieving a mean detection rate of 75.719% and a mean radial error of 1.518 mm. While there is room for improvement, these findings undeniably open the door to highly accurate and fully automatic location of craniofacial landmarks. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for the community to benchmark future algorithm developments at https://cl-detection2023.grand-challenge.org/.
Related papers
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Multi-Resolution Fusion for Fully Automatic Cephalometric Landmark
Detection [1.9580473532948401]
Cephalometric landmark detection on lateral skull X-ray images plays a crucial role in the diagnosis of certain dental diseases.
Based on extensive data observations and quantitative analyses, we discovered that visual features from different receptive fields affect the detection accuracy of various landmarks differently.
We implemented this method in the Cephalometric Landmark Detection in Lateral X-ray Images 2023 Challenge and achieved a Mean Radial Error (MRE) of 1.62 mm and a Success Detection Rate (SDR) 2.0mm of 74.18% in the final testing phase.
arXiv Detail & Related papers (2023-10-04T14:42:45Z) - 'Aariz: A Benchmark Dataset for Automatic Cephalometric Landmark
Detection and CVM Stage Classification [0.402058998065435]
This dataset includes 1000 lateral cephalometric radiographs (LCRs) obtained from 7 different radiographic imaging devices with varying resolutions.
The clinical experts of our team meticulously annotated each radiograph with 29 cephalometric landmarks, including the most significant soft tissue landmarks ever marked in any publicly available dataset.
We believe that this dataset will be instrumental in the development of reliable automated landmark detection frameworks for use in orthodontics and beyond.
arXiv Detail & Related papers (2023-02-15T17:31:56Z) - CEPHA29: Automatic Cephalometric Landmark Detection Challenge 2023 [0.402058998065435]
We organise the CEPHA29 Automatic Cephalometric Landmark Detection Challenge.
We provide the largest known publicly available dataset, consisting of 1000 cephalometric X-ray images.
We hope that our challenge will signal the beginning of a new era in the discipline.
arXiv Detail & Related papers (2022-12-09T12:25:58Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - High-Resolution Segmentation of Tooth Root Fuzzy Edge Based on
Polynomial Curve Fitting with Landmark Detection [14.733417048938518]
We propose a model for high-resolution segmentation based on curve fitting with landmark detection (HS-PCL)
It is based on detecting multiple landmarks evenly distributed on the edge of the tooth root to fit a smooth curve as the segmentation of the tooth root.
In our model, a maximum number of the shortest algorithm (MNSDA) is proposed to automatically reduce the negative influence of the wrong landmarks.
arXiv Detail & Related papers (2021-03-07T04:28:09Z) - Automated 3D cephalometric landmark identification using computerized
tomography [1.4349468613117398]
Identification of 3D cephalometric landmarks that serve as proxy to the shape of human skull is the fundamental step in cephalometric analysis.
Recently, automatic landmarking of 2D cephalograms using deep learning (DL) has achieved great success, but 3D landmarking for more than 80 landmarks has not yet reached a satisfactory level.
This paper presents a semi-supervised DL method for 3D landmarking that takes advantage of anonymized landmark dataset with paired CT data being removed.
arXiv Detail & Related papers (2020-12-16T07:29:32Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
We present a new topology-adapting deep graph learning approach for accurate anatomical facial and medical landmark detection.
The proposed method constructs graph signals leveraging both local image features and global shape features.
Experiments are conducted on three public facial image datasets (WFLW, 300W, and COFW-68) as well as three real-world X-ray medical datasets (Cephalometric (public), Hand and Pelvis)
arXiv Detail & Related papers (2020-04-17T11:55:03Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.