論文の概要: From Passive Watching to Active Learning: Empowering Proactive Participation in Digital Classrooms with AI Video Assistant
- arxiv url: http://arxiv.org/abs/2409.15843v1
- Date: Tue, 24 Sep 2024 08:12:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 08:31:23.266996
- Title: From Passive Watching to Active Learning: Empowering Proactive Participation in Digital Classrooms with AI Video Assistant
- Title(参考訳): パッシブウォッチングからアクティブラーニングへ:AIビデオアシスタントを用いたデジタル教室における積極的参加の活用
- Authors: Anna Bodonhelyi, Enkeleda Thaqi, Süleyman Özdel, Efe Bozkir, Enkelejda Kasneci,
- Abstract要約: SAM(Study with AI Mentor)は、教育ビデオと、大規模言語モデルを利用したコンテキスト対応チャットインターフェースを統合する高度なプラットフォームである。
140人の参加者を対象としたクラウドソーシングによるユーザスタディにおいて、SAMは事前および事前知識テストによって評価された。
結果はSAMユーザーが96.8%の精度でより優れた知識を得られることを示した。
- 参考スコア(独自算出の注目度): 7.894264027400722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In online education, innovative tools are crucial for enhancing learning outcomes. SAM (Study with AI Mentor) is an advanced platform that integrates educational videos with a context-aware chat interface powered by large language models. SAM encourages students to ask questions and explore unclear concepts in real-time, offering personalized, context-specific assistance, including explanations of formulas, slides, and images. In a crowdsourced user study involving 140 participants, SAM was evaluated through pre- and post-knowledge tests, comparing a group using SAM with a control group. The results demonstrated that SAM users achieved greater knowledge gains, with a 96.8% answer accuracy. Participants also provided positive feedback on SAM's usability and effectiveness. SAM's proactive approach to learning not only enhances learning outcomes but also empowers students to take full ownership of their educational experience, representing a promising future direction for online learning tools.
- Abstract(参考訳): オンライン教育では、学習成果を高めるために革新的なツールが不可欠である。
SAM(Study with AI Mentor)は、教育ビデオと、大規模言語モデルを利用したコンテキスト対応チャットインターフェースを統合する高度なプラットフォームである。
SAMは学生に質問をし、不明瞭な概念をリアルタイムで探求することを奨励し、公式、スライド、画像の説明を含む、個人化されたコンテキスト固有の支援を提供する。
140名の参加者を対象としたクラウドソーシングによるユーザスタディにおいて,SAMを用いたグループとコントロールグループを比較し,事前および事前知識テストによりSAMを評価した。
結果はSAMユーザーが96.8%の精度でより優れた知識を得られることを示した。
参加者はSAMのユーザビリティと有効性についても肯定的なフィードバックを提供した。
SAMの学習への積極的なアプローチは、学習成果を高めるだけでなく、オンライン学習ツールの将来的な方向性を示す教育経験の完全な所有権を学生に与える。
関連論文リスト
- Personalised Feedback Framework for Online Education Programmes Using Generative AI [0.0]
本稿では,埋め込みを組み込むことでChatGPTの機能を拡張したフィードバックフレームワークを提案する。
本研究の一環として,オープンエンドおよび複数選択質問に対する有効率90%と100%を達成できる概念解の証明を提案し,開発した。
論文 参考訳(メタデータ) (2024-10-14T22:35:40Z) - Arena Learning: Build Data Flywheel for LLMs Post-training via Simulated Chatbot Arena [126.70522244144088]
AI駆動のアノテーションを使ってアリーナの戦いをシミュレートするために設計された、革新的なオフライン戦略であるArena Learningを紹介します。
Arena Learningは、オフラインシミュレーションとオンラインコンペティションの正確な評価と一貫性を保証する。
ターゲットモデルであるWizardLM-$beta$をトレーニングするためにArena Learningを適用し、大幅なパフォーマンス向上を示します。
論文 参考訳(メタデータ) (2024-07-15T11:26:07Z) - LLMs Could Autonomously Learn Without External Supervision [36.36147944680502]
大規模言語モデル(LLM)は、伝統的に人間の注釈付きデータセットと事前定義されたトレーニング目標に結び付けられてきた。
本稿では,LLMのための自律学習手法を提案する。
本手法は, LLMに対して, 文章と直接対話して自己学習を行う能力を与える。
論文 参考訳(メタデータ) (2024-06-02T03:36:37Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM)は、オープンワールドシナリオにおいて、プロンプトのガイダンスによって、その印象的な一般化機能を実証した。
オープンコンテキストにSAMをアライメントするための自動プロンプトのための新しいフレームワークAlignSAMを提案する。
論文 参考訳(メタデータ) (2024-06-01T16:21:39Z) - Tutorly: Turning Programming Videos Into Apprenticeship Learning Environments with LLMs [1.6961276655027102]
我々の研究は、プログラミングビデオを認知的見習いのフレームワークを使って1対1の学習体験に変換する。
TutorlyはJupyterLabとして開発され、学習者はパーソナライズされた学習目標を設定することができる。
論文 参考訳(メタデータ) (2024-05-21T17:17:34Z) - Open-Vocabulary SAM: Segment and Recognize Twenty-thousand Classes Interactively [69.97238935096094]
Open-Vocabulary SAMはSAMにインスパイアされたモデルであり、対話的なセグメンテーションと認識のために設計されている。
約22,000のクラスを分類・認識できる。
論文 参考訳(メタデータ) (2024-01-05T18:59:22Z) - Boosting Segment Anything Model Towards Open-Vocabulary Learning [69.42565443181017]
Segment Anything Model (SAM)は、新しいパラダイムビジョン基盤モデルとして登場した。
SAMは様々な領域で応用や適応を発見できるが、その主な制限はオブジェクトの意味を把握できないことである。
我々は,SAMとオープン語彙オブジェクト検出器をエンドツーエンドフレームワークでシームレスに統合するSamborを提案する。
論文 参考訳(メタデータ) (2023-12-06T17:19:00Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation
based on Visual Foundation Model [29.42043345787285]
本稿では,Segment Anything Model (SAM) のための適切なプロンプトの生成を学習する手法を提案する。
これによりSAMはリモートセンシング画像に対して意味的に識別可能なセグメンテーション結果を生成することができる。
また,SAMコミュニティ内での最近の進歩を図り,その性能をRSPrompterと比較する。
論文 参考訳(メタデータ) (2023-06-28T14:51:34Z) - Visualizing Self-Regulated Learner Profiles in Dashboards: Design
Insights from Teachers [9.227158301570787]
学生の自己統制学習(SRL)行動を監視するダッシュボードであるFlippEDの設計と実装を行う。
10人の大学教員を対象としたセミ構造化インタビューにおいて,ツールのユーザビリティと動作性を評価した。
論文 参考訳(メタデータ) (2023-05-26T12:03:11Z) - Self-directed Machine Learning [86.3709575146414]
教育科学において、自己指導型学習は受動的教師指導型学習よりも効果的であることが示されている。
本稿では,自己指向機械学習(SDML)の基本概念を紹介し,SDMLのためのフレームワークを提案する。
提案したSDMLプロセスは,自己タスク選択,自己データ選択,自己モデル選択,自己最適化戦略選択,自己評価基準選択の恩恵を受ける。
論文 参考訳(メタデータ) (2022-01-04T18:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。