論文の概要: Personalised Feedback Framework for Online Education Programmes Using Generative AI
- arxiv url: http://arxiv.org/abs/2410.11904v1
- Date: Mon, 14 Oct 2024 22:35:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:42:59.194140
- Title: Personalised Feedback Framework for Online Education Programmes Using Generative AI
- Title(参考訳): 生成AIを用いたオンライン教育プログラムの個人化フィードバックフレームワーク
- Authors: Ievgeniia Kuzminykh, Tareita Nawaz, Shihao Shenzhang, Bogdan Ghita, Jeffery Raphael, Hannan Xiao,
- Abstract要約: 本稿では,埋め込みを組み込むことでChatGPTの機能を拡張したフィードバックフレームワークを提案する。
本研究の一環として,オープンエンドおよび複数選択質問に対する有効率90%と100%を達成できる概念解の証明を提案し,開発した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: AI tools, particularly large language modules, have recently proven their effectiveness within learning management systems and online education programmes. As feedback continues to play a crucial role in learning and assessment in schools, educators must carefully customise the use of AI tools in order to optimally support students in their learning journey. Efforts to improve educational feedback systems have seen numerous attempts reflected in the research studies but mostly have been focusing on qualitatively benchmarking AI feedback against human-generated feedback. This paper presents an exploration of an alternative feedback framework which extends the capabilities of ChatGPT by integrating embeddings, enabling a more nuanced understanding of educational materials and facilitating topic-targeted feedback for quiz-based assessments. As part of the study, we proposed and developed a proof of concept solution, achieving an efficacy rate of 90% and 100% for open-ended and multiple-choice questions, respectively. The results showed that our framework not only surpasses expectations but also rivals human narratives, highlighting the potential of AI in revolutionising educational feedback mechanisms.
- Abstract(参考訳): AIツール、特に大きな言語モジュールは、最近、学習管理システムとオンライン教育プログラムにおいてその効果を証明した。
学校における学習と評価において、フィードバックが重要な役割を担い続けているため、教育者は、学習過程における生徒を最適に支援するために、AIツールの使用を慎重にカスタマイズする必要がある。
教育フィードバックシステムを改善する努力は、研究に反映された多くの試みを見てきたが、主にAIフィードバックを人為的なフィードバックに対して質的にベンチマークすることに注力してきた。
本稿では,ChatGPTを組み込むことによって,学習教材のよりきめ細やかな理解と,クイズに基づく評価のためのトピック対象フィードバックの促進を可能にする,代替的なフィードバックフレームワークを提案する。
本研究の一環として, オープンエンド質問と複数選択質問の有効率を90%, 100%とする概念解の証明を提案し, 開発した。
その結果、私たちのフレームワークは期待を上回るだけでなく、人間の物語にも対抗し、AIが教育的フィードバックメカニズムに革命をもたらす可能性を浮き彫りにした。
関連論文リスト
- Revolutionising Role-Playing Games with ChatGPT [0.0]
本研究の目的は,AIによるシミュレーションが学生の学習経験に与える影響を分析することである。
ヴィゴツキーの社会文化的理論に基づいて、ChatGPTは学生に戦略的意思決定プロセスのより深い理解を与えるために用いられた。
論文 参考訳(メタデータ) (2024-07-02T08:21:40Z) - Enhancing Instructional Quality: Leveraging Computer-Assisted Textual
Analysis to Generate In-Depth Insights from Educational Artifacts [13.617709093240231]
本研究では、人工知能(AI)と機械学習(ML)が教育内容、教師の談話、学生の反応を分析して教育改善を促進する方法について検討する。
私たちは、教師のコーチング、学生のサポート、コンテンツ開発など、AI/ML統合が大きな利点をもたらす重要な領域を特定します。
本稿では,AI/ML技術と教育的目標との整合性の重要性を強調し,その教育的可能性を実現する。
論文 参考訳(メタデータ) (2024-03-06T18:29:18Z) - Improving the Validity of Automatically Generated Feedback via
Reinforcement Learning [50.067342343957876]
強化学習(RL)を用いた正当性と整合性の両方を最適化するフィードバック生成フレームワークを提案する。
具体的には、直接選好最適化(DPO)によるトレーニングのための拡張データセットにおいて、GPT-4のアノテーションを使用してフィードバックペアよりも好みを生成する。
論文 参考訳(メタデータ) (2024-03-02T20:25:50Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
RATsAppはオープンソースの自動フィードバックシステム(AFS)で、フォーマティブフィードバックなどの研究ベースの機能を組み込んでいる。
このシステムは、数学的能力、表現能力、データリテラシーなどの中核的なSTEM能力に焦点を当てている。
オープンソースプラットフォームであるRATsAppは、継続的な開発へのパブリックコントリビューションを奨励し、教育ツールを改善するための共同アプローチを促進する。
論文 参考訳(メタデータ) (2024-01-19T07:13:07Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
目標指向知能チューニングシステム(GITS)という新しいタスクを提案する。
GITSは,演習や評価のカスタマイズを戦略的に計画することで,学生の指定概念の習得を可能にすることを目的としている。
PAI(Planning-Assessment-Interaction)と呼ばれるグラフに基づく新しい強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-03T12:37:16Z) - AI-assisted Learning for Electronic Engineering Courses in High
Education [2.67766280323297]
この研究には、学生、講師、エンジニアなど、様々な利害関係者の評価と反映が含まれている。
この研究の結果は、AIツールとしてのChatGPTのメリットと限界に光を当て、技術的分野における革新的な学習アプローチの道を開いた。
論文 参考訳(メタデータ) (2023-11-02T07:48:10Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
論文 参考訳(メタデータ) (2023-07-10T11:05:51Z) - Reinforcement Learning Tutor Better Supported Lower Performers in a Math
Task [32.6507926764587]
強化学習は、開発コストを削減し、インテリジェントな学習ソフトウェアの有効性を向上させるための重要なツールとなり得る。
本研究では, 深層強化学習を用いて, 音量の概念を学習する学生に適応的な教育支援を行うことができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:11:24Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Facial Feedback for Reinforcement Learning: A Case Study and Offline
Analysis Using the TAMER Framework [51.237191651923666]
訓練者の表情からエージェント学習の可能性について,評価フィードバックとして解釈することで検討した。
設計したCNN-RNNモデルを用いて,学習者に対して表情とコンペティションの使用を指示することで,肯定的および否定的なフィードバックを推定する精度を向上させることができることを示す。
シミュレーション実験の結果,表情に基づく予測フィードバックのみから学習できることが示唆された。
論文 参考訳(メタデータ) (2020-01-23T17:50:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。