論文の概要: Zero-Shot Detection of AI-Generated Images
- arxiv url: http://arxiv.org/abs/2409.15875v1
- Date: Tue, 24 Sep 2024 08:46:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 08:21:18.671103
- Title: Zero-Shot Detection of AI-Generated Images
- Title(参考訳): AI生成画像のゼロショット検出
- Authors: Davide Cozzolino, Giovanni Poggi, Matthias Nießner, Luisa Verdoliva,
- Abstract要約: AI生成画像を検出するゼロショットエントロピー検出器(ZED)を提案する。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
ZEDは精度の点でSoTAよりも平均3%以上改善されている。
- 参考スコア(独自算出の注目度): 54.01282123570917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting AI-generated images has become an extraordinarily difficult challenge as new generative architectures emerge on a daily basis with more and more capabilities and unprecedented realism. New versions of many commercial tools, such as DALLE, Midjourney, and Stable Diffusion, have been released recently, and it is impractical to continually update and retrain supervised forensic detectors to handle such a large variety of models. To address this challenge, we propose a zero-shot entropy-based detector (ZED) that neither needs AI-generated training data nor relies on knowledge of generative architectures to artificially synthesize their artifacts. Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images. To this end, we rely on a lossless image encoder that estimates the probability distribution of each pixel given its context. To ensure computational efficiency, the encoder has a multi-resolution architecture and contexts comprise mostly pixels of the lower-resolution version of the image.Since only real images are needed to learn the model, the detector is independent of generator architectures and synthetic training data. Using a single discriminative feature, the proposed detector achieves state-of-the-art performance. On a wide variety of generative models it achieves an average improvement of more than 3% over the SoTA in terms of accuracy. Code is available at https://grip-unina.github.io/ZED/.
- Abstract(参考訳): AI生成画像の検出は、新たな生成アーキテクチャがますます多くの能力と前例のないリアリズムを持って日々出現するにつれ、非常に難しい課題となっている。
DALLE、Midjourney、Stable Diffusionなどの多くの商用ツールの新バージョンが最近リリースされ、このような様々なモデルを扱うために監督された法医学的検出器を継続的に更新し再訓練することは不可能である。
この課題に対処するために、ゼロショットエントロピーベースの検出器(ZED)を提案し、AI生成したトレーニングデータも、人工的に人工的に人工的に人工的に合成する生成アーキテクチャの知識にも依存しない。
機械によるテキスト検出の最近の研究に触発された私たちのアイデアは、分析対象の画像が実際の画像のモデルと比較してどれだけ驚くかを測定することである。
この目的のために、各画素の確率分布をそのコンテキストから推定するロスレス画像エンコーダを頼りにしている。
計算効率を確保するため,エンコーダはマルチレゾリューションアーキテクチャを備え,画像の低レゾリューションバージョンのピクセルで構成されているため,モデル学習には実際の画像のみが必要であるため,検出器はジェネレータアーキテクチャや合成訓練データとは独立している。
一つの識別的特徴を用いて、提案した検出器は最先端の性能を達成する。
様々な生成モデルにおいて、精度の点でSoTAよりも平均3%以上改善されている。
コードはhttps://grip-unina.github.io/ZED/で入手できる。
関連論文リスト
- A Sanity Check for AI-generated Image Detection [49.08585395873425]
本稿では,AIによる画像検出の課題が解決されたかどうかの検査を行う。
既存の手法の一般化を定量化するために,Chameleonデータセット上で,既製のAI生成画像検出器を9つ評価した。
複数の専門家が同時に視覚的アーチファクトやノイズパターンを抽出するAI生成画像検出装置(AID)を提案する。
論文 参考訳(メタデータ) (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGIDは、堅牢なAI生成画像検出のためのトレーニング不要でモデルに依存しない方法である。
RIGIDは、既存のトレーニングベースおよびトレーニング不要な検出器を著しく上回っている。
論文 参考訳(メタデータ) (2024-05-30T14:49:54Z) - Data-Independent Operator: A Training-Free Artifact Representation
Extractor for Generalizable Deepfake Detection [105.9932053078449]
本研究では,より一般的な人工物表現を捉えるのに,小型かつトレーニング不要なフィルタが十分であることを示す。
トレーニングソースとテストソースの両方に不偏があるため、未確認ソースに対して魅力的な改善を実現するために、Data-Independent Operator (DIO)と定義する。
我々の検出器は13.3%の大幅な改善を実現し、新しい最先端の性能を確立した。
論文 参考訳(メタデータ) (2024-03-11T15:22:28Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
本研究の目的は、AI生成画像の普遍的検出のための事前学習された視覚言語モデル(VLM)の可能性を探ることである。
我々は,CLIP機能に基づく軽量な検出戦略を開発し,その性能を様々な難易度シナリオで検証する。
論文 参考訳(メタデータ) (2023-11-30T21:11:20Z) - PatchCraft: Exploring Texture Patch for Efficient AI-generated Image
Detection [39.820699370876916]
本稿では,多種多様な生成モデルを用いて生成した偽画像を識別できる新しいAI生成画像検出器を提案する。
グローバルな意味情報を消去し,テクスチャパッチを強化するために,新しいSmash&Reconstruction前処理を提案する。
我々のアプローチは最先端のベースラインよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2023-11-21T07:12:40Z) - Online Detection of AI-Generated Images [17.30253784649635]
この設定における一般化、Nモデルのトレーニング、および次の(N+k)上でのテストについて研究する。
我々は、この手法を画素予測に拡張し、自動的に生成されたインペイントデータを用いて、強い性能を示す。
また、商用モデルが自動データ生成に利用できないような設定では、画素検出器が合成画像全体に対してのみ訓練可能であるかどうかを評価する。
論文 参考訳(メタデータ) (2023-10-23T17:53:14Z) - A Shared Representation for Photorealistic Driving Simulators [83.5985178314263]
本稿では、識別器アーキテクチャを再考することにより、生成画像の品質を向上させることを提案する。
シーンセグメンテーションマップや人体ポーズといったセマンティックインプットによって画像が生成されるという問題に焦点が当てられている。
我々は,意味的セグメンテーション,コンテンツ再構成,および粗い粒度の逆解析を行うのに十分な情報をエンコードする,共有潜在表現を学習することを目指している。
論文 参考訳(メタデータ) (2021-12-09T18:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。