Explaining word embeddings with perfect fidelity: Case study in research impact prediction
- URL: http://arxiv.org/abs/2409.15912v1
- Date: Tue, 24 Sep 2024 09:28:24 GMT
- Title: Explaining word embeddings with perfect fidelity: Case study in research impact prediction
- Authors: Lucie Dvorackova, Marcin P. Joachimiak, Michal Cerny, Adriana Kubecova, Vilem Sklenak, Tomas Kliegr,
- Abstract summary: Self-model Rated Entities (SMER) for logistic regression-based classification models trained on word embeddings.
We show that SMER has theoretically perfect fidelity with the explained model, as its prediction corresponds exactly to the average of predictions for individual words in the text.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Best performing approaches for scholarly document quality prediction are based on embedding models, which do not allow direct explanation of classifiers as distinct words no longer correspond to the input features for model training. Although model-agnostic explanation methods such as Local interpretable model-agnostic explanations (LIME) can be applied, these produce results with questionable correspondence to the ML model. We introduce a new feature importance method, Self-model Rated Entities (SMER), for logistic regression-based classification models trained on word embeddings. We show that SMER has theoretically perfect fidelity with the explained model, as its prediction corresponds exactly to the average of predictions for individual words in the text. SMER allows us to reliably determine which words or entities positively contribute to predicting impactful articles. Quantitative and qualitative evaluation is performed through five diverse experiments conducted on 50.000 research papers from the CORD-19 corpus. Through an AOPC curve analysis, we experimentally demonstrate that SMER produces better explanations than LIME for logistic regression.
Related papers
- Interpretability in Symbolic Regression: a benchmark of Explanatory Methods using the Feynman data set [0.0]
Interpretability of machine learning models plays a role as important as the model accuracy.
This paper proposes a benchmark scheme to evaluate explanatory methods to explain regression models.
Results have shown that Symbolic Regression models can be an interesting alternative to white-box and black-box models.
arXiv Detail & Related papers (2024-04-08T23:46:59Z) - Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings [32.03184402316848]
We analyze attribution scores extracted from prompt-based models w.r.t. plausibility and faithfulness.
We find that using the prompting paradigm yields more plausible explanations than fine-tuning the models in low-resource settings.
arXiv Detail & Related papers (2024-03-08T14:14:37Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
We propose a complete framework for extending concept-based interpretability methods to NLP.
We optimize for features whose existence causes the output predictions to change substantially.
Our method achieves superior results on predictive impact, usability, and faithfulness compared to the baselines.
arXiv Detail & Related papers (2023-05-03T14:48:27Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
We assess the robustness of interpretations of neural text classifiers based on pretrained Transformer encoders.
Both tests show surprising deviations from expected behavior, raising questions about the extent of insights that practitioners may draw from interpretations.
arXiv Detail & Related papers (2021-06-08T18:31:02Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
We perform a comprehensive evaluation of type distributional vectors, either produced by static DSMs or obtained by averaging the contextualized vectors generated by BERT.
The results show that the alleged superiority of predict based models is more apparent than real, and surely not ubiquitous.
We borrow from cognitive neuroscience the methodology of Representational Similarity Analysis (RSA) to inspect the semantic spaces generated by distributional models.
arXiv Detail & Related papers (2021-05-20T15:18:06Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
We propose using k nearest neighbor representations to identify training examples responsible for a model's predictions.
We show that kNN representations are effective at uncovering learned spurious associations.
Our results indicate that the kNN approach makes the finetuned model more robust to adversarial inputs.
arXiv Detail & Related papers (2020-10-18T16:55:25Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.