論文の概要: DataGpt-SQL-7B: An Open-Source Language Model for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2409.15985v1
- Date: Tue, 24 Sep 2024 11:38:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 07:42:12.618354
- Title: DataGpt-SQL-7B: An Open-Source Language Model for Text-to-SQL
- Title(参考訳): DataGpt-SQL-7B: テキストからSQLへのオープンソース言語モデル
- Authors: Lixia Wu, Peng Li, Junhong Lou, Lei Fu,
- Abstract要約: 我々は,データアクセスと分析を非専門ユーザ向けに民主化する,コンパクトで微調整されたモデルと自己定義機構のスイートを提案する。
我々のシステムであるDataGpt-sqlは、スパイダーデブで87.2%の精度を達成した。
- 参考スコア(独自算出の注目度): 7.76068876576964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In addressing the pivotal role of translating natural language queries into SQL commands, we propose a suite of compact, fine-tuned models and self-refine mechanisms to democratize data access and analysis for non-expert users, mitigating risks associated with closed-source Large Language Models. Specifically, we constructed a dataset of over 20K sample for Text-to-SQL as well as the preference dateset, to improve the efficiency in the domain of SQL generation. To further ensure code validity, a code corrector was integrated into the model. Our system, DataGpt-sql, achieved 87.2\% accuracy on the spider-dev, respectively, showcasing the effectiveness of our solution in text-to-SQL conversion tasks. Our code, data, and models are available at \url{https://github.com/CainiaoTechAi/datagpt-sql-7b}
- Abstract(参考訳): 自然言語クエリをSQLコマンドに翻訳する際の重要な役割に対処するために、我々は、クローズドソースの大規模言語モデルに関連するリスクを軽減するために、データアクセスと分析を非専門家のユーザに民主化する、コンパクトで微調整されたモデルと自己定義機構のスイートを提案する。
具体的には、SQL生成領域の効率を向上させるため、テキストからSQLまでの20K以上のデータセットと好みの日付セットを構築した。
コードの有効性をさらに確保するため、コード修正器がモデルに統合された。
我々のシステムであるDataGpt-sqlは,テキストからSQLへの変換タスクにおいて,クモ-デフに対して87.2\%の精度を達成した。
私たちのコード、データ、モデルは \url{https://github.com/CainiaoTechAi/datagpt-sql-7b} で利用可能です。
関連論文リスト
- RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
本稿では、双方向スキーマリンク、コンテキスト情報拡張、バイナリ選択戦略、マルチターン自己補正を組み合わせたRSLと呼ばれる新しいフレームワークを提案する。
ベンチマークの結果,オープンソースのソリューション間でのSOTA実行精度は67.2%,BIRDは87.9%,GPT-4オクルージョンは87.9%であった。
提案手法は,DeepSeekを同一のプロンプトで適用した場合,GPT-4ベースのテキスト・ツー・シークシステムよりも優れている。
論文 参考訳(メタデータ) (2024-10-31T16:22:26Z) - MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation [10.205010004198757]
テキスト・ツー・ジェネレーションは、非専門家が自然言語でデータベースと対話することを可能にする。
GPT-4のような大規模クローズドソースモデルの最近の進歩は、アクセシビリティ、プライバシ、レイテンシの課題を提示している。
我々は、小型で効率的でオープンソースのテキスト・ツー・ジェネレーション・モデルの開発に注力する。
論文 参考訳(メタデータ) (2024-10-16T18:03:24Z) - SQL-GEN: Bridging the Dialect Gap for Text-to-SQL Via Synthetic Data And Model Merging [30.306023265985658]
あらゆる方言に対して高品質な合成学習データを生成するためのフレームワークを提案する。
本稿では,方言間の共有知識を活用する新しいMixture-of-Experts(MoE)を提案する。
論文 参考訳(メタデータ) (2024-08-22T20:50:48Z) - TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring [11.78795632771211]
本稿では,任意の入力質問を正しく処理するモデルとして,テキスト・ツー・信頼性を評価するための新しいベンチマークを提案する。
2つのモデリング手法を用いて,新たなペナルティに基づく評価基準を用いた既存手法の評価を行った。
論文 参考訳(メタデータ) (2024-03-23T16:12:52Z) - Fine-Tuning Language Models for Context-Specific SQL Query Generation [0.0]
本稿では,自然言語を tosql クエリに変換するタスクに対して,オープンソースの大規模言語モデル (LLM) を微調整する新しい手法を提案する。
我々は、Snowflake SQLとGoogleの方言に合わせて、合成データセットに基づいて訓練されたsqlクエリ生成に特化したモデルを紹介する。
提案手法では,GPT-4を用いてコンテキスト固有のデータセットを生成し,リソース制約を最適化するためにLoRa技術を用いて3つのオープンソースLCM(Starcoder Plus,Code-Llama,Mistral)を微調整する。
微調整モデルでは、ベースラインGPと比較してゼロショット設定では優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-04T18:04:27Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - UNITE: A Unified Benchmark for Text-to-SQL Evaluation [72.72040379293718]
テキスト・ツー・ドメイン・システムのためのUNIfiedベンチマークを導入する。
公開されているテキストからドメインへのデータセットと29Kデータベースで構成されている。
広く使われているSpiderベンチマークと比較すると、SQLパターンの3倍の増加が紹介されている。
論文 参考訳(メタデータ) (2023-05-25T17:19:52Z) - XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for
Cross-lingual Text-to-SQL Semantic Parsing [70.40401197026925]
大規模言語モデルを用いたインコンテキスト学習は、最近セマンティック解析タスクの驚くべき結果を示している。
この研究は、あるクエリに対して関連する英語の例を検索する学習を行うXRICLフレームワークを導入している。
また、大規模言語モデルの翻訳プロセスを容易にするために、対象言語に対するグローバルな翻訳例も含んでいる。
論文 参考訳(メタデータ) (2022-10-25T01:33:49Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - Data Agnostic RoBERTa-based Natural Language to SQL Query Generation [0.0]
NL2タスクは、自然言語による質問から有効なクエリへの変換問題を解決するために、ディープラーニングアプローチを見つけることを目的としている。
データプライバシに関するアプローチを,その中核として紹介しています。
成果は得られていないが、モデルのトレーニングからテーブルの必要性を排除した。
論文 参考訳(メタデータ) (2020-10-11T13:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。